Assignment 9: Meromorphic Functions and residue calculus Due Tuesday April 12, 2022

John McCuan

April 7, 2022

Problem 1 (Casorati-Weierstrass example) Let $w \in \mathbb{C}$. Find a sequence of points $\left\{z_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C} \backslash\{0\}$ with

$$
\lim _{n \rightarrow \infty} z_{n}=0 \quad \text { and } \quad\left|e^{1 / z_{n}}-w\right|<\frac{1}{n}
$$

Hint: Try to prove something much stronger.

Problem 2 (stereographic projection; Ahlfors Chapter 1 §2.4) Let $\sigma: \mathbb{S}^{2} \rightarrow \mathbb{C} \cup\{\infty\}$ be stereographic projection from the sphere

$$
\mathbb{S}^{2}=\left\{(\xi, \eta, \zeta) \in \mathbb{R}^{3}: \xi^{2}+\eta^{2}+\zeta^{2}=1\right\}
$$

to the Riemann sphere $\mathbb{C} \cup\{\infty\}$ by

$$
\sigma(\xi, \eta, \zeta)= \begin{cases}\frac{1}{1-\zeta}(\xi+i \eta), & \zeta \neq 1 \\ \infty, & \zeta=1\end{cases}
$$

(a) Show

$$
\sigma(p) \overline{\sigma(-p)}=-1
$$

for $p \in \mathbb{S}^{2} \backslash\{(0,0,1)\}$.
(b) If $C=\partial D_{r}\left(z_{0}\right)$, then what is

$$
\sigma^{-1}(C)=\left\{\sigma^{-1}(z): z \in C\right\} ?
$$

(c) What are the holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ which extend to be meromorphic on the Riemann sphere?
(d) Given an open subset Ω of \mathbb{C}, is it always true that

$$
\sigma^{-1}(\Omega) \cup\{(0,0,1)\}=\sigma^{-1}(\Omega \cup\{\infty\}) ?
$$

(e) Find the rational functions on the Riemann sphere without any poles.

Problem 3 (removable singularities) Let $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic with an isolated singularity at $z_{0} \in \Omega$.
(a) If f is bounded, show

$$
\lim _{\epsilon \searrow 0} \int_{\zeta=\beta} \frac{f(\zeta)}{\zeta-z_{0}}=0
$$

where $\beta=\beta_{\epsilon}$ parameterizes $\partial D_{\epsilon}\left(z_{0}\right)$.
(b) If

$$
\lim _{z \rightarrow z_{0}}\left|\left(z-z_{0}\right) f(z)\right|=0
$$

show

$$
\lim _{\epsilon \searrow 0} \int_{\zeta=\beta} \frac{f(\zeta)}{\zeta-z_{0}}=0
$$

where $\beta=\beta_{\epsilon}$ parameterizes $\partial D_{\epsilon}\left(z_{0}\right)$.
(c) Prove Ahlfors' theorem on removable singularities: If

$$
\lim _{z \rightarrow z_{0}}\left|\left(z-z_{0}\right) f(z)\right|=0
$$

then there exists a holomorphic function $g: \Omega \rightarrow \mathbb{C}$ with

$$
g_{\left.\right|_{\Omega \backslash\left\{z_{0}\right\}}} \equiv f
$$

Hint: You should use analytic continuation (carefully).
Problem 4 (meromorphic function on the Riemann sphere) Consider the rational function $f: \mathbb{C} \rightarrow \mathbb{C} \cup\{\infty\}$ by

$$
f(z)=\frac{p(z)}{q(z)}
$$

where

$$
p(z)=\sum_{n=0}^{k} a_{n} z^{n}=a_{k} \prod_{j=1}^{k}\left(z-z_{j}\right) \quad \text { and } \quad q(z)=\sum_{n=0}^{\ell} b_{n} z^{n}=b_{\ell} \prod_{j=1}^{\ell}\left(z-w_{j}\right)
$$

are polynomials with no common factors. Notice we are considering $f: \mathbb{C} \rightarrow \mathbb{C}$ as meromorphic with $f\left(w_{j}\right)=\infty$ for each $j=1,2, \ldots, \ell$.
(a) Show

$$
\lim _{z \rightarrow w_{j}} f(z)=\infty \quad \text { for each } j=1,2, \ldots, \ell
$$

(b) What is the order of each pole w_{j}; how is it determined?
(c) Write $\phi(\zeta)=f(1 / \zeta)$ as a rational function (ratio of polynomials) and consider $\phi: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \cup\{\infty\}$ as a meromorphic function with an isolated singularity at $\zeta=0$. Classify the singularity of ϕ.
(d) Consider $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ and describe/classify the (local) behavior at $z_{0}=\infty$.

Problem 5 (stereographic projection; Ahlfors Chapter 1 §2.4) Let $\sigma: \mathbb{S}^{2} \rightarrow \mathbb{C} \cup\{\infty\}$ be stereographic projection from the sphere

$$
\mathbb{S}^{2}=\left\{(\xi, \eta, \zeta) \in \mathbb{R}^{3}: \xi^{2}+\eta^{2}+\zeta^{2}=1\right\}
$$

to the Riemann sphere $\mathbb{C} \cup\{\infty\}$ by

$$
\sigma(\xi, \eta, \zeta)= \begin{cases}\frac{1}{1-\zeta}(\xi+i \eta), & \zeta \neq 1 \\ \infty, & \zeta=1\end{cases}
$$

Find the formula for $\sigma^{-1}: \mathbb{C} \rightarrow \mathbb{S}^{2} \backslash\{(0,0,1)\}$.
Problem 6 (analytic continuation) Let $f: \Omega \rightarrow \mathbb{C}$ be a non-constant holomorphic function with an isolated zero at $z_{0} \in \Omega$.
(a) Show there exists some $r>0$, some $k \in \mathbb{N}$, and a non-vanishing holomorphic function $g: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C} \backslash\{0\}$ for which

$$
f_{\left.\right|_{D_{r}\left(z_{0}\right)}} \equiv\left(z-z_{0}\right)^{k} g .
$$

Hint: Power series.
(b) Show there exists a (unique) holomorphic function $h: \Omega \rightarrow \mathbb{C}$ for which

$$
f \equiv\left(z-z_{0}\right)^{k} h .
$$

Can you say h is non-vanishing? If not, give an example.
(c) Compute the logarithmic derivative

$$
\frac{f^{\prime}}{f}
$$

in terms of h. What can you say about $\lambda(z)=f^{\prime} / f$, for example, locally at z_{0} ?

Problem 7 (Rouche's theorem; argument principle) Recall McCuan's version of Rouche's theorem: Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic and assume α parameterizes a simple loop in Ω for which there holds

$$
\begin{equation*}
f(\alpha) \neq 0 \quad \text { and } \quad\left|\frac{g(\alpha)}{f(\alpha)}-1\right|<1 \tag{1}
\end{equation*}
$$

Then $g(\alpha) \neq 0$, and the number of zeros of g (counted with multiplicities) circumnavigated by α is the same as the number of zeros of f (counted with multiplicities) circumnavigated by α :

$$
\int_{\alpha} \frac{g^{\prime}}{g}=\int_{\alpha} \frac{f^{\prime}}{f}
$$

Using α in the argument of a function here, e.g., $f(\alpha) \neq 0$, means (naturally) that the condition holds on the curve, e.g., f does not vanish at any point on the curve parameterized by α. Note that (1) implies $g(\alpha) \neq 0$.
(a) Prove that McCuan's version implies Ahlfors' version: Let $f, g: \Omega \rightarrow \mathbb{C}$ be holomorphic and assume α parameterizes a simple loop in Ω for which there holds

$$
\begin{equation*}
|f(\alpha)-g(\alpha)|<|f(\alpha)| \tag{2}
\end{equation*}
$$

Then $f(\alpha) \neq 0, g(\alpha) \neq 0$, and the number of zeros of g (counted with multiplicities) circumnavigated by α is the same as the number of zeros of f (counted with multiplicities) circumnavigated by α :

$$
\int_{\alpha} \frac{g^{\prime}}{g}=\int_{\alpha} \frac{f^{\prime}}{f}
$$

(b) Prove that McCuan's version implies Stein's version: Let $f, h: \Omega \rightarrow \mathbb{C}$ be holomorphic and assume a parameterizes a simple loop in Ω for which there holds

$$
\begin{equation*}
|h(\alpha)|<|f(\alpha)| \tag{3}
\end{equation*}
$$

Then $f(\alpha)+h(\alpha) \neq 0$, and the number of zeros of $f+h$ (counted with multiplicities) circumnavigated by α is the same as the number of zeros of f (counted with multiplicities) circumnavigated by α :

$$
\int_{\alpha} \frac{f^{\prime}}{f}=\int_{\alpha} \frac{f^{\prime}+h^{\prime}}{f+h}
$$

Problem 8 (S6SS Chapter 3 Exercise $15(a)$) Consider an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ for which there exists some $k \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ and positive constants A and B such that

$$
|f(z)| \leq A|z|^{k}+B
$$

Prove f is a polynomial of degree no greater than k.
Problem 9 (SESS Chapter 3 Exercise 15(b)) Assume $f: D_{1}(0) \rightarrow \mathbb{C}$ is holomorphic and there exist arguments θ_{1} and θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi$ such that f satisfies

$$
\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=0 \quad \text { uniformly for } \theta_{1}<\theta<\theta_{2}
$$

i.e., given any $\epsilon>0$, there exists some δ such that

$$
\left|f\left(r e^{i \theta}\right)\right|<\epsilon \quad \text { for } 1-\delta<r<1 \text { and } \theta_{1}<\theta<\theta_{2}
$$

Show $f \equiv 0$.

