
Assignment 8: Meremorphic Functions

and residue calculus

Due Tuesday April 5, 2022

John McCuan

April 13, 2022

Problem 1 (S&S Chapter 1 Exercise 18; Assignment 3 Problem 9—second chance)
Here is the original statement of the problem: Consider a power series

f(z) =

∞
∑

n=0

anz
n

with radius of convergence R > 0. Show that f has a (convergent) power series
expansion

f(z) =

∞
∑

n=0

bn(z − z0)
n

with center z0 for any z0 ∈ DR(0).
This is a nice problem, and I don’t think anyone got it quite correct. A good

number of you gave some1 “hand-waving” assertion to the effect that because the series
converges absolutely, you can “rearrange” terms freely. I’ve written up my solution
with an explanation of why I don’t think the rearrangement of terms applicable to an
absolutely convergent series is applicable here. In any case, I offer the following as
an opportunity for you to nail down some/the details. In particular, I’m adding the
following:

1This is my interpretation. Maybe you know exactly what you are talking about, but this is your

chance to explain it to me.
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(a) A rearrangement of a sequence {αn}
∞
n=1 of complex numbers is a sequence

{αj(n)}
∞
n=1 where j : N → N is a bijection. Show that if

∞
∑

n=1

αn is absolutely convergent,

then
∞
∑

n=1

αj(n) is convergent for every bijection j : N → N,

with value
∞
∑

n=1

αj(n) =

∞
∑

n=1

αn ∈ C.

(b) (conjecture) Let
∞
∑

n=1

αn

be an absolutely convergent series for which each αn satisfies

αn =

∞
∑

m=1

βnm

for some absolutely convergent series

∞
∑

m=1

βnm.

Then
∞
∑

n=1

αn =

∞
∑

m=1

∞
∑

n=1

βnm.

(c) Give a correct solution of the original problem and show, moreoever, that the
series expansion of f with center z0 has radius of convergence (at least) R−|z0|.
Hint: Go back through my solution of the original problem and improve it.

2



Problem 2 (S&S Chapter 3 Exercise 13; Ahlfors’ theorem on removable singular-
ities) Let f : Ω\{z0} → C be holomorphic with an isolated singularity at z0 ∈ Ω.
Complete the steps below to prove the following result:

Theorem 1 (Ahlfors’ result on removeable singularities) There exists a holomorphic
function f1 : Ω → C with the restriction to Ω\{z0} satisfying

f1
∣

∣

Ω\{z0}

≡ f

if and only if
lim
z→z0

(z − z0)f(z) = 0. (1)

(a) Show that if (1) holds, then

lim
ǫց0

∫

ζ=α

f(ζ)

ζ − z
= 0

where α(t) = z0 + ǫeit for 0 ≤ t ≤ 2π parameterizes a circle around z0.

(b) Note that if Dr(z0) ⊂ Ω, then f1 : Dr/2(z0) → C by

f1(z) =
1

2πi

∫

ζ=α

f(ζ)

ζ − z

where α(z) = z0+3reit/4 for 0 ≤ t ≤ 2π parameterizes a circle inDr(z0)\Dr/2(z0)
is a well-defined continuous function on Dr/2(z0). Use a difference quotient to
show the function f1 is holomorphic on all of Dr/2(z0). Hint: Keep the integral
as a complex integral; do not write it as a hybrid integral on an interval.

(c) Show that f1(z) = f(z) for z ∈ Dr/2(z0)\{z0}. Hint(s): Use Cauchy’s theorem
and a keyhole contour.

(d) Finish the details of proving Ahlfors’ theorem.
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Problem 3 (Laurent series) Let Ω = DR(0)\Dr(0) be an annular region for fixed r
and R with 0 < r < R. Let f : Ω → C be holomorphic.

(a) Consider the function f1 : DR(0) → C defined by

f1(z) =
1

2πi

∫

ζ=α

f(ζ)

ζ − z

where α = ρeit for 0 ≤ t ≤ 2π for some ρ with |z| < ρ < R. Show that f1 is a
well-defined holomorphic function on DR(0).

(b) Consider the function f2 : C\Dr(0) → C by

f2(z) = −
1

2πi

∫

ζ=α

f(ζ)

ζ − z

where α = ρeit for 0 ≤ t ≤ 2π for some ρ with r < ρ < |z|. Show that f2 is a
well-defined holomorphic function on C\Dr(0).

(c) Prove that f(z) = f1(z) + f2(z) for z ∈ Ω. Hint: Cauchy’s theorem.

(d) Consider g : D1/r(0)\{0} by

g(w) = f2(1/w).

Show g has a removable singularity at w = 0.

(e) Conclude that

f(z) =

∞
∑

n=−∞

anz
n

with

an =
1

2πi

∫

ζ=α

f(ζ)

ζn+1
.

Note: If one expands on an annulus with a different center z0, then the series becomes

f(z) =

∞
∑

n=−∞

an(z − z0)
n

and the coefficients become

an =
1

2πi

∫

ζ=α

f(ζ)

(ζ − z0)n+1
.

4



Problem 4 (winding number) Given a closed path Γ in C\{z0} parameterized by α
the winding number of Γ with respect to z0 is defined by

n(Γ, z0) =
1

2πi

∫

α

1

z − z0
.

(a) Prove g : C\{z0} → C by

g(z) =
1

z − z0

does not have a primitive on any domain Ω with z0 ∈ Ω.

(b) Given any integer k ∈ Z, find a path with

n(Γ, z0) = k.

(c) Do you think you can find a closed loop in C\{z0} with winding number

n(Γ, z0) /∈ Z?

Problem 5 (S&S Chapter 3 Exercise 1) Recall that

sin(πz) =
eiπz − e−iπz

2i
.

(a) Identify all the zeros of sin(πz).

(b) Find the power series expansion of sin(πz) with center at each zero.

(c) Find the singular expansion of

f(z) =
1

sin(πz)

at each pole z0 and find res(f, z0) at that pole.

Problem 6 (S&S Chapter 3 Exercise 2) Use residue calculus to compute

∫ ∞

−∞

1

1 + x4
dx.
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Problem 7 (S&S Chapter 3 Exercise 6) Use residue calculus to show

∫ ∞

−∞

1

(1 + x2)n+1
dx =

(2n)!

4n(n!)2
π.

Problem 8 (S&S Chapter 3 Exercise 9) Use residue calculus to show

∫ 1

0

log(sin πx) dx = − log 2.

Problem 9 (S&S Chapter 3 Exercise 12) Let u ∈ R\Z.

(a) Compute

lim
k→∞

∫

α

π cotπz

(u+ z)2

where α(t) = (k + 1/2)eit for 0 ≤ t ≤ 2π and k ≥ |u|.

(b) Conclude that
∞
∑

n=−∞

1

(u+ n)2
=

π2

(sin πu)2
.

(c) What changes/happens if u ∈ C\Z?

Problem 10 (S&S Chapter 3 Exercise 14) Assume f : C → C is entire. If f is
one-to-one, show there exist a0, a1 ∈ C such that

f(z) = a1z + a0.
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