# Assignment 8: Meremorphic Functions and residue calculus <br> Due Tuesday April 5, 2022 

John McCuan

April 13, 2022

Problem 1 (SظS Chapter 1 Exercise 18; Assignment 3 Problem 9—second chance) Here is the original statement of the problem: Consider a power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with radius of convergence $R>0$. Show that $f$ has a (convergent) power series expansion

$$
f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

with center $z_{0}$ for any $z_{0} \in D_{R}(0)$.
This is a nice problem, and I don't think anyone got it quite correct. A good number of you gave some ${ }^{1}$ "hand-waving" assertion to the effect that because the series converges absolutely, you can "rearrange" terms freely. I've written up my solution with an explanation of why I don't think the rearrangement of terms applicable to an absolutely convergent series is applicable here. In any case, I offer the following as an opportunity for you to nail down some/the details. In particular, I'm adding the following:

[^0](a) A rearrangement of a sequence $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ of complex numbers is a sequence $\left\{\alpha_{j(n)}\right\}_{n=1}^{\infty}$ where $j: \mathbb{N} \rightarrow \mathbb{N}$ is a bijection. Show that if
$$
\sum_{n=1}^{\infty} \alpha_{n} \quad \text { is absolutely convergent, }
$$
then
$$
\sum_{n=1}^{\infty} \alpha_{j(n)} \quad \text { is convergent for every bijection } j: \mathbb{N} \rightarrow \mathbb{N}
$$
with value
$$
\sum_{n=1}^{\infty} \alpha_{j(n)}=\sum_{n=1}^{\infty} \alpha_{n} \in \mathbb{C}
$$
(b) (conjecture) Let
$$
\sum_{n=1}^{\infty} \alpha_{n}
$$
be an absolutely convergent series for which each $\alpha_{n}$ satisfies
$$
\alpha_{n}=\sum_{m=1}^{\infty} \beta_{n m}
$$
for some absolutely convergent series
$$
\sum_{m=1}^{\infty} \beta_{n m}
$$

Then

$$
\sum_{n=1}^{\infty} \alpha_{n}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \beta_{n m}
$$

(c) Give a correct solution of the original problem and show, moreoever, that the series expansion of $f$ with center $z_{0}$ has radius of convergence (at least) $R-\left|z_{0}\right|$. Hint: Go back through my solution of the original problem and improve it.

Problem 2 (S6SS Chapter 3 Exercise 13; Ahlfors' theorem on removable singularities) Let $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be holomorphic with an isolated singularity at $z_{0} \in \Omega$. Complete the steps below to prove the following result:

Theorem 1 (Ahlfors' result on removeable singularities) There exists a holomorphic function $f_{1}: \Omega \rightarrow \mathbb{C}$ with the restriction to $\Omega \backslash\left\{z_{0}\right\}$ satisfying

$$
\left.f_{1}\right|_{\Omega \backslash\left\{z_{0}\right\}} \equiv f
$$

if and only if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 \tag{1}
\end{equation*}
$$

(a) Show that if (1) holds, then

$$
\lim _{\epsilon \searrow 0} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta-z}=0
$$

where $\alpha(t)=z_{0}+\epsilon e^{i t}$ for $0 \leq t \leq 2 \pi$ parameterizes a circle around $z_{0}$.
(b) Note that if $D_{r}\left(z_{0}\right) \subset \Omega$, then $f_{1}: D_{r / 2}\left(z_{0}\right) \rightarrow \mathbb{C}$ by

$$
f_{1}(z)=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta-z}
$$

where $\alpha(z)=z_{0}+3$ re $e^{i t} / 4$ for $0 \leq t \leq 2 \pi$ parameterizes a circle in $D_{r}\left(z_{0}\right) \backslash D_{r / 2}\left(z_{0}\right)$ is a well-defined continuous function on $D_{r / 2}\left(z_{0}\right)$. Use a difference quotient to show the function $f_{1}$ is holomorphic on all of $D_{r / 2}\left(z_{0}\right)$. Hint: Keep the integral as a complex integral; do not write it as a hybrid integral on an interval.
(c) Show that $f_{1}(z)=f(z)$ for $z \in D_{r / 2}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$. Hint(s): Use Cauchy's theorem and a keyhole contour.
(d) Finish the details of proving Ahlfors' theorem.

Problem 3 (Laurent series) Let $\Omega=D_{R}(0) \backslash \overline{D_{r}(0)}$ be an annular region for fixed $r$ and $R$ with $0<r<R$. Let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic.
(a) Consider the function $f_{1}: D_{R}(0) \rightarrow \mathbb{C}$ defined by

$$
f_{1}(z)=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta-z}
$$

where $\alpha=\rho e^{i t}$ for $0 \leq t \leq 2 \pi$ for some $\rho$ with $|z|<\rho<R$. Show that $f_{1}$ is a well-defined holomorphic function on $D_{R}(0)$.
(b) Consider the function $f_{2}: \mathbb{C} \backslash \overline{D_{r}(0)} \rightarrow \mathbb{C}$ by

$$
f_{2}(z)=-\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta-z}
$$

where $\alpha=\rho e^{i t}$ for $0 \leq t \leq 2 \pi$ for some $\rho$ with $r<\rho<|z|$. Show that $f_{2}$ is a well-defined holomorphic function on $\mathbb{C} \backslash \overline{D_{r}(0)}$.
(c) Prove that $f(z)=f_{1}(z)+f_{2}(z)$ for $z \in \Omega$. Hint: Cauchy's theorem.
(d) Consider $g: D_{1 / r}(0) \backslash\{0\}$ by

$$
g(w)=f_{2}(1 / w)
$$

Show $g$ has a removable singularity at $w=0$.
(e) Conclude that

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

with

$$
a_{n}=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta^{n+1}}
$$

Note: If one expands on an annulus with a different center $z_{0}$, then the series becomes

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and the coefficients become

$$
a_{n}=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}}
$$

Problem 4 (winding number) Given a closed path $\Gamma$ in $\mathbb{C} \backslash\left\{z_{0}\right\}$ parameterized by $\alpha$ the winding number of $\Gamma$ with respect to $z_{0}$ is defined by

$$
n\left(\Gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\alpha} \frac{1}{z-z_{0}}
$$

(a) Prove $g: \mathbb{C} \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ by

$$
g(z)=\frac{1}{z-z_{0}}
$$

does not have a primitive on any domain $\Omega$ with $z_{0} \in \Omega$.
(b) Given any integer $k \in \mathbb{Z}$, find a path with

$$
n\left(\Gamma, z_{0}\right)=k
$$

(c) Do you think you can find a closed loop in $\mathbb{C} \backslash\left\{z_{0}\right\}$ with winding number

$$
n\left(\Gamma, z_{0}\right) \notin \mathbb{Z} ?
$$

Problem 5 (S夭SS Chapter 3 Exercise 1) Recall that

$$
\sin (\pi z)=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i}
$$

(a) Identify all the zeros of $\sin (\pi z)$.
(b) Find the power series expansion of $\sin (\pi z)$ with center at each zero.
(c) Find the singular expansion of

$$
f(z)=\frac{1}{\sin (\pi z)}
$$

at each pole $z_{0}$ and find $\operatorname{res}\left(f, z_{0}\right)$ at that pole.
Problem 6 (SE3S Chapter 3 Exercise 2) Use residue calculus to compute

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x
$$

Problem 7 (SE3S Chapter 3 Exercise 6) Use residue calculus to show

$$
\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n+1}} d x=\frac{(2 n)!}{4^{n}(n!)^{2}} \pi
$$

Problem 8 (S83S Chapter 3 Exercise 9) Use residue calculus to show

$$
\int_{0}^{1} \log (\sin \pi x) d x=-\log 2
$$

Problem 9 (SGSS Chapter 3 Exercise 12) Let $u \in \mathbb{R} \backslash \mathbb{Z}$.
(a) Compute

$$
\lim _{k \rightarrow \infty} \int_{\alpha} \frac{\pi \cot \pi z}{(u+z)^{2}}
$$

where $\alpha(t)=(k+1 / 2) e^{i t}$ for $0 \leq t \leq 2 \pi$ and $k \geq|u|$.
(b) Conclude that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(u+n)^{2}}=\frac{\pi^{2}}{(\sin \pi u)^{2}}
$$

(c) What changes/happens if $u \in \mathbb{C} \backslash \mathbb{Z}$ ?

Problem 10 (SGS Chapter 3 Exercise 14) Assume $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire. If $f$ is one-to-one, show there exist $a_{0}, a_{1} \in \mathbb{C}$ such that

$$
f(z)=a_{1} z+a_{0} .
$$


[^0]:    ${ }^{1}$ This is my interpretation. Maybe you know exactly what you are talking about, but this is your chance to explain it to me.

