Assignment 7: Analyticity Due Tuesday March 29, 2022

John McCuan

April 13, 2022

Problem 1 (Dan Romik's notes: The Fundamental Theorem of Algebra) Recall that we were considering a monic quadratic polynomial $p(z)=a_{0}+a_{1} z+z^{2}$ under the assumptions
(i) $a_{0} \neq 0$,
(ii) $a_{1} \neq 0$, and
(iii) $a_{1}^{2} \neq 4 a_{0}$.

In the previous assignment we considered

$$
\left\{p\left(r e^{i t}\right): 0 \leq t \leq 2 \pi\right\}
$$

for $r=\epsilon$ small. Here we consider the opposite extreme

$$
\Gamma_{\infty}=\left\{p\left(R e^{i t}\right): 0 \leq t \leq 2 \pi\right\}
$$

for $R>0$ large. If you need to review the overall elements of Romik's approach and the context of these problems, you can look back at Problem 1 of Assignment 5.

Consider for $R>0$ the curve

$$
C_{R}=\left\{\left(\frac{1}{R^{2}}\right) p\left(R e^{i t}\right): 0 \leq t \leq 2 \pi\right\},
$$

parameterized by

$$
\beta_{R}(t)=\frac{1}{R^{2}} p\left(R e^{i t}\right) \quad \text { for } 0 \leq t \leq 2 \pi
$$

and the parameterized curve $\beta_{\infty}:[0,2 \pi] \rightarrow \mathbb{C}$ by

$$
\beta_{\infty}(t)=e^{2 i t}
$$

The curve C_{R} is a kind of (normalized) "blow-down" of the image curve Γ_{∞}. The idea is that as $R \nearrow \infty$, the curve $\Gamma_{\infty}=\Gamma_{\infty}(R)$ is getting "very large" and "very close" to a double covered circle. The blow-down allows us to see what Γ_{∞} looks like on a fixed visible scale in order to see the geometry of the limit.
(a) Show that

$$
\lim _{R \nearrow \infty} p\left(R e^{i t}\right)=\infty
$$

uniformly in $t \in[0,2 \pi]$.
(b) Show

$$
\lim _{R \nearrow \infty}\left\|\beta_{R}-\beta_{\infty}\right\|_{C^{k}}=0
$$

uniformly in $t \in[0,2 \pi]$. If you need to review the definition of C^{k} here and the associated norm, see Assignment 6 Problem 1.
(c) What does part (b) above tell you about the image Γ_{∞} for $R>0$ large?
(d) Prove that for $R>0$ large enough,

$$
\int_{\alpha} \frac{1}{z}=4 \pi i \neq 0 .
$$

where $\alpha(t)=p\left(R e^{i t}\right)$.

Problem 2 ((S83S Chapter 2 Exercise 7) Let $f: D_{1}(0) \rightarrow \mathbb{C}$ be holomorphic and let $\mathcal{W}=\left\{f(z): z \in D_{1}(0)\right\}$ be the image of f. Show

$$
\begin{equation*}
\operatorname{diam} \mathcal{W}=\sup _{z, w \in D_{1}(0)}|f(z)-f(w)| \geq 2\left|f^{\prime}(0)\right| \tag{1}
\end{equation*}
$$

Hint:

$$
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)-f(-\zeta)}{\zeta^{2}}
$$

Can you show that if equality holds in (1) then $f(z)=a_{1} z+a_{0}$ for some $a_{0}, a_{1} \in \mathbb{C}$? Problem 3 (S\&S Exercise 2.10) The Weierstrass approximation theorem says that any real valued continuous function on a closed interval in \mathbb{R} can be uniformly approximated by a polynomial function (with real coefficients).
(a) Find a complex valued continuous function $f: \overline{D_{1}(0)} \rightarrow \mathbb{C}$ on the closed unit disk in \mathbb{C} which cannot be uniformly approximated by a polynomial

$$
p(z)=\sum_{n=0}^{k} a_{n} z^{n}
$$

with complex coefficients. Hint: Theorem 5.2 in SESS.
(b) Find a real valued continuous function $f: \overline{D_{1}(0)} \rightarrow \mathbb{C}$ on the closed unit disk in \mathbb{C} which cannot be uniformly approximated by a polynomial with complex coefficients.
(c) (extra) Show that any continuous real valued function $u: \overline{B_{1}(\mathbf{0})} \rightarrow \mathbb{R}$ defined on the unit disk $\overline{B_{1}(\mathbf{0})}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ in \mathbb{R}^{2} can be uniformly approximated by a polynomial

$$
q(x, y)=\sum_{i+j \leq k} a_{i j} x^{i} y^{j}
$$

in two real variables x and y and with real coefficients $a_{i j}$. Hint: Look up (and go through the proof of) the Stone-Weierstrass Theorem. Well, I said it was "extra."
(d) (extra-just for fun) If you're not familiar with multi-indices, look up multiindex notation and make sense of the following Taylor expansion for a function $u: U \rightarrow \mathbb{R}$ with $U \subset \mathbb{R}^{n}$ at the point $\mathbf{x}_{0} \in U$:

$$
\sum_{|\beta|=0}^{\infty} \frac{D^{\beta} u\left(\mathbf{x}_{0}\right)}{\beta!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\beta} .
$$

Problem 4 (SBS Exercise 2.11; Poisson Integral Formula) Let $f: D_{1}(0) \rightarrow \mathbb{C}$ be holomorphic.
(a) Show that for $z \in D_{1}(0) \backslash\{0\}$ and $|z|<r<1$

$$
\int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta-w}=0
$$

where $w=r^{2} / \bar{z}$.
(b) Show that for $z \in D_{1}(0)$,

$$
f(z)=\frac{1}{2 \pi i} \int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta} \operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right)
$$

where $\alpha(t)=r e^{i t}$ for any r with $|z|<r<1$. Hint(s): Use part (a) along with the Cauchy integral formula.

Problem 5 (SßSS Exercise 2.12; Poisson Integral Formula) Let $u \in C^{2}\left(B^{1}(\mathbf{0})\right.$) be harmonic on $B_{1}(\mathbf{0})=\left\{(x, y): x^{2}+y^{2}<1\right\}$. You should recall that this means $u: B_{1}(\mathbf{0}) \rightarrow \mathbb{R}$ is twice continuously differentiable and

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

(a) Show there exists a holomorphic function $f: D_{1}(0) \rightarrow \mathbb{C}$ with $f=u+i v$. Hint (s) : If one had such a holomorphic function f, then one would have $f^{\prime}=2 \partial u / \partial z$. Write down $g=2 \partial u / \partial z$, and show g has a primitive on $D_{1}(0)$.
(b) If u extends continuously to $\overline{B_{1}(\mathbf{0})}$, show

$$
u(\mathbf{x})=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i t}\right) \frac{1-|\mathbf{x}|^{2}}{1-2|\mathbf{x}| \cos (\arg z-t)+|\mathbf{x}|^{2}} \quad \text { for }|\mathbf{x}|<1
$$

Notice that the integral is a convolution in the argument of $u\left(e^{i t}\right)$ with

$$
P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

which is called the Poisson kernel.

Problem 6 (Schwarz Reflection Principle) Let θ and ϕ be fixed in the interval ($0, \pi / 2$). Assume $f: \Omega \rightarrow \mathbb{C}$ is holomorphic in the sector

$$
\Omega=\left\{r e^{i t}: 0<r<\infty, 0<t<2 \theta\right\}
$$

and satisfies

$$
f\left(r e^{i \theta}\right) \in\left\{\rho e^{i \phi}: \rho>0\right\} \quad \text { for } \quad r>0 .
$$

Finally, let
$\Omega_{1}=\left\{r e^{i t}: 0<r<\infty, 0<t<\theta\right\} \quad$ and $\quad \Omega_{2}=\left\{r e^{i t}: 0<r<\infty, \theta<t<2 \theta\right\}$.
Use the Schwarz reflection principle to find a formula for $f(z)$ when $z \in \Omega_{1}$ in terms of a value of $f(\zeta)$ for some $\zeta \in \Omega_{2}$. Hint: The answer I got is

$$
f(z)=e^{2 i \phi} \overline{f\left(\bar{z} e^{2 i \theta}\right)} .
$$

Problem 7 (SGSS Exercise 2.15) Let $f: D_{1}(0) \rightarrow \mathbb{C} \backslash\{0\}$ be holomorphic and extend continuously to $\overline{D_{1}(0)}$ with

$$
|f(z)|=1 \quad \text { when } \quad|z|=1
$$

Show f is constant. Hint(s): Extend f to $\mathbb{C} \backslash \overline{D_{1}(0)}$ by

$$
f(z)=\frac{1}{f(1 / \bar{z})}
$$

Show the extension is entire.

