Assignment 7: Analyticity Due Tuesday March 29, 2022

John McCuan

April 13, 2022

Problem 1 (Dan Romik's notes: The Fundamental Theorem of Algebra) Recall that we were considering a monic quadratic polynomial $p(z) = a_0 + a_1 z + z^2$ under the assumptions

- (i) $a_0 \neq 0$,
- (ii) $a_1 \neq 0$, and
- (iii) $a_1^2 \neq 4a_0$.

In the previous assignment we considered

$$\{p(re^{it}): 0 \le t \le 2\pi\}$$

for $r = \epsilon$ small. Here we consider the opposite extreme

$$\Gamma_{\infty} = \{ p(Re^{it}) : 0 \le t \le 2\pi \}$$

for R > 0 large. If you need to review the overall elements of Romik's approach and the context of these problems, you can look back at Problem 1 of Assignment 5.

Consider for R > 0 the curve

$$C_R = \left\{ \left(\frac{1}{R^2}\right) p(Re^{it}) : 0 \le t \le 2\pi \right\},\,$$

parameterized by

$$\beta_R(t) = \frac{1}{R^2} p(Re^{it}) \qquad \text{for } 0 \le t \le 2\pi$$

and the parameterized curve $\beta_{\infty} : [0, 2\pi] \to \mathbb{C}$ by

$$\beta_{\infty}(t) = e^{2it}$$

The curve C_R is a kind of (normalized) "blow-down" of the image curve Γ_{∞} . The idea is that as $R \nearrow \infty$, the curve $\Gamma_{\infty} = \Gamma_{\infty}(R)$ is getting "very large" and "very close" to a double covered circle. The blow-down allows us to see what Γ_{∞} looks like on a fixed visible scale in order to see the geometry of the limit.

(a) Show that

$$\lim_{R \nearrow \infty} p(Re^{it}) = \infty$$

uniformly in $t \in [0, 2\pi]$.

(b) Show

$$\lim_{R \nearrow \infty} \|\beta_R - \beta_\infty\|_{C^k} = 0$$

uniformly in $t \in [0, 2\pi]$. If you need to review the definition of C^k here and the associated norm, see Assignment 6 Problem 1.

- (c) What does part (b) above tell you about the image Γ_{∞} for R > 0 large?
- (d) Prove that for R > 0 large enough,

$$\int_{\alpha} \frac{1}{z} = 4\pi i \neq 0.$$

where $\alpha(t) = p(Re^{it})$.

Problem 2 ((S&S Chapter 2 Exercise 7) Let $f : D_1(0) \to \mathbb{C}$ be holomorphic and let $\mathcal{W} = \{f(z) : z \in D_1(0)\}$ be the image of f. Show

diam
$$\mathcal{W} = \sup_{z,w\in D_1(0)} |f(z) - f(w)| \ge 2|f'(0)|.$$
 (1)

Hint:

$$2f'(0) = \frac{1}{2\pi i} \int_{\zeta = \alpha} \frac{f(\zeta) - f(-\zeta)}{\zeta^2}$$

Can you show that if equality holds in (1) then $f(z) = a_1 z + a_0$ for some $a_0, a_1 \in \mathbb{C}$?

Problem 3 (S&S Exercise 2.10) The Weierstrass approximation theorem says that any real valued continuous function on a closed interval in \mathbb{R} can be uniformly approximated by a polynomial function (with real coefficients).

(a) Find a complex valued continuous function $f: D_1(0) \to \mathbb{C}$ on the closed unit disk in \mathbb{C} which cannot be uniformly approximated by a polynomial

$$p(z) = \sum_{n=0}^{k} a_n z^n$$

with complex coefficients. Hint: Theorem 5.2 in S&S.

- (b) Find a real valued continuous function $f : \overline{D_1(0)} \to \mathbb{C}$ on the closed unit disk in \mathbb{C} which cannot be uniformly approximated by a polynomial with complex coefficients.
- (c) (extra) Show that any continuous real valued function $u : \overline{B_1(\mathbf{0})} \to \mathbb{R}$ defined on the unit disk $\overline{B_1(\mathbf{0})} = \{(x, y) : x^2 + y^2 \le 1\}$ in \mathbb{R}^2 can be uniformly approximated by a polynomial

$$q(x,y) = \sum_{i+j \le k} a_{ij} x^i y^j$$

in two real variables x and y and with real coefficients a_{ij} . Hint: Look up (and go through the proof of) the Stone-Weierstrass Theorem. Well, I said it was "extra."

(d) (extra—just for fun) If you're not familiar with multi-indices, look up multiindex notation and make sense of the following Taylor expansion for a function $u: U \to \mathbb{R}$ with $U \subset \mathbb{R}^n$ at the point $\mathbf{x}_0 \in U$:

$$\sum_{|\beta|=0}^{\infty} \frac{D^{\beta} u(\mathbf{x}_0)}{\beta!} (\mathbf{x} - \mathbf{x}_0)^{\beta}.$$

Problem 4 (S&S Exercise 2.11; Poisson Integral Formula) Let $f : D_1(0) \to \mathbb{C}$ be holomorphic.

(a) Show that for $z \in D_1(0) \setminus \{0\}$ and |z| < r < 1

$$\int_{\zeta=\alpha} \frac{f(\zeta)}{\zeta - w} = 0$$

where $w = r^2/\bar{z}$.

(b) Show that for $z \in D_1(0)$,

$$f(z) = \frac{1}{2\pi i} \int_{\zeta = \alpha} \frac{f(\zeta)}{\zeta} \operatorname{Re}\left(\frac{\zeta + z}{\zeta - z}\right)$$

where $\alpha(t) = re^{it}$ for any r with |z| < r < 1. Hint(s): Use part (a) along with the Cauchy integral formula.

Problem 5 (S&S Exercise 2.12; Poisson Integral Formula) Let $u \in C^2(B^1(\mathbf{0}))$ be harmonic on $B_1(\mathbf{0}) = \{(x, y) : x^2 + y^2 < 1\}$. You should recall that this means $u : B_1(\mathbf{0}) \to \mathbb{R}$ is twice continuously differentiable and

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

- (a) Show there exists a holomorphic function $f: D_1(0) \to \mathbb{C}$ with f = u + iv. Hint(s): If one had such a holomorphic function f, then one would have $f' = 2\partial u/\partial z$. Write down $g = 2\partial u/\partial z$, and show g has a primitive on $D_1(0)$.
- (b) If u extends continuously to $\overline{B_1(0)}$, show

$$u(\mathbf{x}) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{it}) \frac{1 - |\mathbf{x}|^2}{1 - 2|\mathbf{x}| \cos(\arg z - t) + |\mathbf{x}|^2} \qquad \text{for } |\mathbf{x}| < 1.$$

Notice that the integral is a convolution in the argument of $u(e^{it})$ with

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}$$

which is called the **Poisson kernel**.

Problem 6 (Schwarz Reflection Principle) Let θ and ϕ be fixed in the interval $(0, \pi/2)$. Assume $f : \Omega \to \mathbb{C}$ is holomorphic in the sector

$$\Omega = \{ re^{it} : 0 < r < \infty, \ 0 < t < 2\theta \}$$

and satisfies

$$f(re^{i\theta}) \in \{\rho e^{i\phi} : \rho > 0\} \quad \text{for} \quad r > 0.$$

Finally, let

$$\Omega_1 = \{ re^{it} : 0 < r < \infty, \ 0 < t < \theta \} \quad \text{and} \quad \Omega_2 = \{ re^{it} : 0 < r < \infty, \ \theta < t < 2\theta \}.$$

Use the Schwarz reflection principle to find a formula for f(z) when $z \in \Omega_1$ in terms of a value of $f(\zeta)$ for some $\zeta \in \Omega_2$. Hint: The answer I got is

$$f(z) = e^{2i\phi} \overline{f(\overline{z}e^{2i\theta})}.$$

Problem 7 (S&S Exercise 2.15) Let $f : D_1(0) \to \mathbb{C} \setminus \{0\}$ be holomorphic and extend continuously to $\overline{D_1(0)}$ with

|f(z)| = 1 when |z| = 1.

Show f is constant. Hint(s): Extend f to $\mathbb{C}\setminus\overline{D_1(0)}$ by

$$f(z) = \frac{1}{\overline{f(1/\overline{z})}}.$$

Show the extension is entire.