Assignment 6: Cauchy's Theorem(s) Due Tuesday March 22, 2022

John McCuan

March 30, 2022

Problem 1 (Dan Romik's notes: The Fundamental Theorem of Algebra) Let us return to part (\mathbf{j}) of Problem 1 of Assignment 5. Recall that this concerns a monic quadratic polynomial $p(z)=a_{0}+a_{1} z+z^{2}$ under the assumptions
(i) $a_{0} \neq 0$,
(ii) $a_{1} \neq 0$, and
(iii) $a_{1}^{2} \neq 4 a_{0}$.

Notice that $p(0)=a_{0}$. In particular, for $r=0$

$$
\left\{p\left(r e^{i t}\right): 0 \leq t \leq 2 \pi\right\}=\left\{a_{0}\right\} \in \mathbb{C} \backslash\{0\} .
$$

The objective here is to use a "blow-up" argument to understand

$$
\Gamma_{0}=\left\{p\left(\epsilon e^{i t}\right): 0 \leq t \leq 2 \pi\right\}
$$

for $\epsilon>0$ small. If you need to review the overall elements of Romik's approach and the context of these problems, you can look back at Problem 1 of Assignment 5.

Consider for $\epsilon>0$ the curve

$$
C_{\epsilon}=\left\{\left(\frac{1}{\epsilon}\right)\left[p\left(\epsilon e^{i t}\right)-a_{0}\right]: 0 \leq t \leq 2 \pi\right\}
$$

parameterized by

$$
\beta_{\epsilon}(t)=\frac{1}{\epsilon}\left[p\left(\epsilon e^{i t}\right)-a_{0}\right] \quad \text { for } 0 \leq t \leq 2 \pi
$$

and the parameterized curve/circle $\beta_{0}:[0,2 \pi] \rightarrow \mathbb{C}$ by

$$
\beta_{0}(t)=a_{1} e^{i t}
$$

The curve C_{ϵ} is called a (normalized) "blow-up" of the image curve Γ_{0}. The idea is that as $\epsilon \searrow 0$, the curve $\Gamma_{0}=\Gamma_{0}(\epsilon)$ is getting "very small" and "very close" to the point $\left\{a_{0}\right\}$. The blow-up allows us to see what Γ_{0} looks like on a fixed visible scale in order to see the geometry of the limit.
(a) Show that

$$
\lim _{\epsilon \searrow 0} p\left(\epsilon e^{i t}\right)=a_{0}
$$

uniformly in $t \in[0,2 \pi]$.
(b) For $k=0,1,2, \ldots$, let us define the C^{k} norm on the (real) differentiability space $C^{k}([0,2 \pi] \rightarrow \mathbb{C})$ by

$$
\left\|\beta-\beta_{0}\right\|_{C^{k}}=\sum_{j=0}^{k} \max \left\{\left|\beta^{(j)}(t)-\beta_{0}^{(j)}(t)\right|: 0 \leq t \leq 2 \pi\right\}
$$

Show

$$
\lim _{\epsilon \searrow 0}\left\|\beta_{\epsilon}-\beta_{0}\right\|_{C^{k}}=0
$$

uniformly in $t \in[0,2 \pi]$.
(c) What does part (b) above tell you about the image Γ_{0} for $\epsilon>0$ small?
(d) Prove that for $\epsilon>0$ small enough,

$$
\int_{\alpha} \frac{1}{z}=0
$$

where $\alpha(t)=p\left(\epsilon e^{i t}\right)$ for $0 \leq t \leq 2 \pi$. Hint: If you have trouble with part (d) here, go on to Problem 2 below, and come back to this one.

Problem 2 (Dan Romik's notes: The Fundamental Theorem of Algebra) Here we revisit the case $k=1$ of Problem 1 of Assignment 5, and part (k) in particular. Remember we wish to calculate

$$
\int_{\alpha} \frac{1}{z}
$$

where $\alpha(t)=a_{0}+a_{1} r e^{i t}$ for $0 \leq t \leq 2 \pi$ and where a_{0} and a_{1} are nonzero complex numbers. Let us assume $\operatorname{Re}\left(a_{0}\right) \geq 0$ and $0<r<r_{0}=\left|a_{0}\right| /\left|a_{1}\right|$.
(a) Note there is a branch of the logarithm $\log : \Omega \rightarrow \mathbb{C}$ given by

$$
\log z=\log |z|+i \arg (z)
$$

on an appropriate domain containing $\Gamma=\{\alpha(t): 0 \leq t \leq 2 \pi\}$.
(b) Conclude

$$
\int_{\alpha} \frac{1}{z}=0 .
$$

Hint: You have a primitive.
(c) If you attempt to calculate

$$
\int_{\alpha} \frac{1}{z}=\int_{0}^{2 \pi} \frac{1}{a_{0}+r e^{i t}} i r e^{i t} d t
$$

directly, then in principle, you should be able to write down a formula for a function $g:[0,2 \pi] \rightarrow \mathbb{C}$ for which $g(0)=g(2 \pi)$ and

$$
g^{\prime}(t)=\frac{1}{a_{0}+r e^{i t}} i r e^{i t}
$$

though this may not be so easy. Determine conditions on r and a_{0} for which

$$
\arg (z)=\tan ^{-1} \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)} \quad \text { for } z=a_{0}+r e^{i t}, 0 \leq t \leq 2 \pi
$$

and find an expression for the function g under these conditions.

Problem 3 (removable singularities and Taylor's formula) Let Ω be an open subset of \mathbb{C} with $z_{0} \in \Omega$. A holomorphic function $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is said to have an isolated singularity at z_{0}.

We will later prove the following result:
Theorem 1 If f has an isolated singularity at $z_{0} \in \Omega$ and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 \tag{1}
\end{equation*}
$$

then there exists an extension $g: \Omega \rightarrow \mathbb{C}$ with g holomorphic and

$$
\begin{equation*}
g_{z \in \Omega \backslash\left\{z_{0}\right\}}=f \tag{2}
\end{equation*}
$$

Conversely, if f has an isolated singularity at $z_{0} \in \Omega$ and there exists an extension $g: \Omega \rightarrow \mathbb{C}$ such that g is holomorphic and (2) holds, then (1) holds as well.

An isolated singularity satisfying one of the equivalent conditions (1) or (2) is called a removable singularity.

For this problem, let $h: \Omega \rightarrow \mathbb{C}$ be holomorphic and consider a point $z_{0} \in \Omega$. The point is to obtain a Taylor expansion formula for h.
(a) Apply Theorem 1 to the function $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ by

$$
f(z)=\frac{h(z)-h\left(z_{0}\right)}{z-z_{0}}
$$

to obtain a holomorphic function $g_{1}: \Omega \rightarrow \mathbb{C}$ for which

$$
h(z)=h\left(z_{0}\right)+g_{1}(z)\left(z-z_{0}\right) .
$$

(b) What is $g_{1}\left(z_{0}\right)$?
(c) Apply Theorem 1 to appropriate functions to obtain holomorphic functions g_{j} : $\Omega \rightarrow \mathbb{C}$ for $j=2,3,4, \ldots$ such that

$$
g_{j}(z)=g_{j}\left(z_{0}\right)+g_{j+1}(z)\left(z-z_{0}\right) .
$$

(d) Conclude

$$
h(z)=\sum_{n=0}^{N} \frac{h^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+g_{N+1}(z)\left(z-z_{0}\right)^{N+1} .
$$

Solution:
(a) The function $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{h(z)-h\left(z_{0}\right)}{z-z_{0}}
$$

satisfies (1) because

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow z_{0}}\left[h(z)-h\left(z_{0}\right)\right]=0
$$

and h is continuous. Therefore Theorem 1 applies, and we can take $g_{1}=g$ from the theorem so that for $z \neq z_{0}$

$$
\frac{h(z)-h\left(z_{0}\right)}{z-z_{0}}=g_{1}(z) .
$$

Thus,

$$
h(z)=h\left(z_{0}\right)+g_{1}(z)\left(z-z_{0}\right),
$$

and this equality clearly also holds for $z=z_{0}$.
(b) Since g_{1} is continuous at z_{0} and equal to the difference quotient away from z_{0}, we have

$$
g_{1}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} g_{1}(z)=h^{\prime}\left(z_{0}\right) .
$$

(c) Since g_{1} is holomorphic, just like h, we can take $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ by

$$
f(z)=f_{2}(z)=\frac{g_{1}(z)-g_{1}\left(z_{0}\right)}{z-z_{0}}
$$

and apply the same argument as in part (a) to get

$$
g_{1}(z)=g_{1}\left(z_{0}\right)+g_{2}(z)\left(z-z_{0}\right) .
$$

Note that from part (b) we also get $g_{2}\left(z_{0}\right)=g_{1}^{\prime}\left(z_{0}\right)$. This is interesting of course because it does not mean $g_{2}\left(z_{0}\right)=h^{\prime \prime}\left(z_{0}\right)$. Plugging back in to our definition of f_{2} we get something like

$$
g_{2}(z)=f_{2}(z)=\frac{h(z)-h\left(z_{0}\right)-h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{\left(z-z_{0}\right)^{2}}
$$

Obviously, if we knew the Taylor expansion formula already (or even the next step of the calculation we are presently making) we could get

$$
g_{2}\left(z_{0}\right)=\frac{h^{\prime \prime}\left(z_{0}\right)}{2} .
$$

Question: Whence cometh the factor of 2 !?
In any case, I think it's clear now that

$$
g_{j}(z)=g_{j}\left(z_{0}\right)+g_{j+1}(z)\left(z-z_{0}\right)
$$

follows by induction if we set

$$
f_{j+1}(z)=\frac{g_{j}(z)-g_{j}\left(z_{0}\right)}{z-z_{0}}
$$

to get a function $f_{j+1}: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ with an isolated singularity at z_{0} to which Theorem 1 applies giving a holomorphic function $g_{j+1}=g$. We'll also always get $g_{j+1}\left(z_{0}\right)=g_{j}^{\prime}\left(z_{0}\right)$.
(d) We've got so far that

$$
h(z)=h\left(z_{0}\right)+g_{1}(z)\left(z-z_{0}\right)
$$

with $g_{1}\left(z_{0}\right)=h^{\prime}\left(z_{0}\right)$ and

$$
\begin{equation*}
h(z)=h\left(z_{0}\right)+h^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+g_{2}(z)\left(z-z_{0}\right)^{2} . \tag{3}
\end{equation*}
$$

This is a good start for the induction, and while we're at it, let's note that we can differentiate (3) to get

$$
h^{\prime}(z)=h^{\prime}\left(z_{0}\right)+g_{2}^{\prime}(z)\left(z-z_{0}\right)^{2}+2 g_{2}(z)\left(z-z_{0}\right) ;
$$

there's the factor of $2!(!)$, and

$$
\begin{equation*}
h^{\prime \prime}(z)=g_{2}^{\prime \prime}(z)\left(z-z_{0}\right)^{2}+2 g_{2}^{\prime}(z)\left(z-z_{0}\right)+2 g_{2}(z) \tag{4}
\end{equation*}
$$

Therefore,

$$
g_{2}\left(z_{0}\right)=\frac{h^{\prime \prime}\left(z_{0}\right)}{2}
$$

as expected. It's looking like it would be nice to have some kind of recursive formula generalizing (4). Let's see what we can do:

$$
\begin{equation*}
h^{(N+1)}(z)=\sum_{n=0}^{N+1}\binom{N+1}{n} \frac{(N+1)!}{(N+1-n)!} g_{N+1}^{(N+1-n)}(z)\left(z-z_{0}\right)^{N+1-n} \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
& h^{(k)}(z)=\sum_{n=k}^{N} \frac{h^{(n)}\left(z_{0}\right)}{(n-k)!}\left(z-z_{0}\right)^{n-k} \\
& \quad+\sum_{n=0}^{k}\binom{k}{n} \frac{(N+1)!}{(N+1-n)!} g_{N+1}^{(k-n)}(z)\left(z-z_{0}\right)^{N+1-n} \tag{6}
\end{align*}
$$

for $0 \leq k \leq N$. I'll admit that I needed to write this down on scratch paper to get a reasonable inductive hypothesis. (It may not be quite correct yet, but it should be in the right direction, and if I (or you) read through it once it should be easilly corrected.)

Here's the induction: Given

$$
\begin{equation*}
h(z)=\sum_{n=0}^{N} \frac{h^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+g_{N+1}(z)\left(z-z_{0}\right)^{N+1} \tag{7}
\end{equation*}
$$

satisfying also (5) and (6) so that in particular,

$$
g_{N+1}\left(z_{0}\right)=\frac{h^{(N+1)}\left(z_{0}\right)}{(N+1)!},
$$

we get from part (c) above

$$
g_{N+1}(z)=g_{N+1}\left(z_{0}\right)+g_{N+2}(z)\left(z-z_{0}\right) .
$$

Substituting this into (7) we find

$$
\begin{aligned}
h(z) & =\sum_{n=0}^{N} \frac{h^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+g_{N+1}\left(z_{0}\right)\left(z-z_{0}\right)^{N+1}+g_{N+2}(z)\left(z-z_{0}\right)^{N+2} \\
& =\sum_{n=0}^{N+1} \frac{h^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}+g_{N+2}(z)\left(z-z_{0}\right)^{N+2} .
\end{aligned}
$$

That was easy. Of course, now we need to verify the derivative values inductively. That's a little unpleasant, but modulo typos it does seem to work out. Differentiating we get

$$
\begin{aligned}
h^{\prime}(z)=\sum_{n=1}^{N} & \frac{h^{(n)}\left(z_{0}\right)}{(n-1)!}\left(z-z_{0}\right)^{n-1} \\
& +g_{N+2}^{\prime}(z)\left(z-z_{0}\right)^{N+2}+(N+2) g_{N+2}(z)\left(z-z_{0}\right)^{N+1}
\end{aligned}
$$

which is the case $k=1$ of (6) with N replaced by $N+1$. We also have the case $k=0$ of course. For $k \leq N$, we may rely on a secondary induction on k to obtain

$$
\begin{aligned}
& h^{k+1}(z)= \sum_{n=k+1}^{N+1} \frac{h^{(n)}\left(z_{0}\right)}{(n-k-1)!}\left(z-z_{0}\right)^{n-k-1} \\
&+\sum_{n=0}^{k}\binom{k}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(k+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\sum_{n=0}^{k}\binom{k}{n} \frac{(N+2)!}{(N+1-n)!} g_{N+2}^{(k-n)}(z)\left(z-z_{0}\right)^{N+1-n} \\
&=\sum_{n=k+1}^{N+1} \frac{h^{(n)}\left(z_{0}\right)}{[n-(k+1)]!}\left(z-z_{0}\right)^{n-(k+1)}+g_{N+2}^{(k+1)}(z)\left(z-z_{0}\right)^{N+2} \\
&+\sum_{n=1}^{k}\binom{k}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(k+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\sum_{n=1}^{k}\binom{k}{n-1} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(k+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\frac{(N+2)!}{(N+1-k)!} g_{N+2}(z)\left(z-z_{0}\right)^{N+1-k} \\
&= \sum_{n=k+1}^{N+1} \frac{h^{(n)}\left(z_{0}\right)}{[n-(k+1)]!}\left(z-z_{0}\right)^{n-(k+1)}+g_{N+2}^{(k+1)}(z)\left(z-z_{0}\right)^{N+2} \\
&+\sum_{n=1}^{k}\binom{k+1}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(k+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\frac{(N+2)!}{(N+1-k)!} g_{N+2}(z)\left(z-z_{0}\right)^{N+1-k} \\
&=\sum_{n=k+1}^{N+1} \frac{h^{(n)}\left(z_{0}\right)}{[n-(k+1)]!}\left(z-z_{0}\right)^{n-(k+1)} \\
&+\sum_{n=0}^{k+1}\binom{k+1}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(k+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} .
\end{aligned}
$$

This is (6) with N replaced with $N+1$ and k replaced with $k+1$. Evaluating
this with $k=N$ we see

$$
h^{N+1}(z)=h^{(N+1)}\left(z_{0}\right)+\sum_{n=0}^{N+1}\binom{N+1}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(N+1-n)}(z)\left(z-z_{0}\right)^{N+2-n} .
$$

Differentiating one last time:

$$
\begin{aligned}
& h^{N+2}(z)= \sum_{n=0}^{N+1}\binom{N+1}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(N+2-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\sum_{n=0}^{N+1}\binom{N+1}{n} \frac{(N+2)!}{(N+1-n)!} g_{N+2}^{(N+1-n)}(z)\left(z-z_{0}\right)^{N+1-n} \\
&= g_{N+2}^{(N+2)}(z)\left(z-z_{0}\right)^{N+2} \\
&+\sum_{n=1}^{N+1}\binom{N+1}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(N+2-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
&+\sum_{n=1}^{N+1}\binom{N+1}{n-1} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(N+2-n)}(z)\left(z-z_{0}\right)^{N+2-n} \\
& \quad+(N+2)!g_{N+2}(z) \\
&= \sum_{n=0}^{N+2}\binom{N+2}{n} \frac{(N+2)!}{(N+2-n)!} g_{N+2}^{(N+2-n)}(z)\left(z-z_{0}\right)^{N+2-n} .
\end{aligned}
$$

This is (5) with N replaced with $N+1$, and this completes the induction.
Problem 4 (Liouville's theorem) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Assume f satisfies a sequential growth estimate as follows: There is a sequence of radii R_{j} $j=1,2,3, \ldots$ with $R_{j} \nearrow \infty$ such that

$$
|f(z)|<\sqrt[3]{|z|} \quad \text { for } \quad|z|=R_{j}
$$

Assume also an integral conformal factor estimate

$$
\left|f^{\prime}(z)\right| \leq\left|\frac{1}{2 \pi} \int_{\zeta=\alpha} \frac{f(\zeta)}{|\zeta-z|^{3 / 2}}\right|
$$

where α parameterizes $\partial D_{r}(z)$ for any $z \in \mathbb{C}$.
Prove f is constant.

Problem 5 (Complex power series) Let Ω be an open subset of \mathbb{C} with $z_{0} \in \mathbb{C}$, and let $f: \Omega \rightarrow \mathbb{C}$ be a function. Show that if f is complex analytic at $z_{0} \in \Omega$, i.e., there is some $r>0$ for which $D_{r}\left(z_{0}\right) \subset \Omega$ and

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { for } z \in D_{r}\left(z_{0}\right)
$$

then the coefficients a_{n} for $n=0,1,2,3, \ldots$ are uniquely determined.
Problem 6 (algebra) Use the fundamental theorem of algebra, as in the proof of Corollary 4.7 of Chapter 2 in Stein and Shakarchi, to prove that every polynomial

$$
p(z)=\sum_{n=0}^{k} a_{n} z^{n}
$$

with $a_{k} \neq 0$ can be written as

$$
p(z)=a_{k} \prod_{n=1}^{k}\left(z-w_{j}\right)
$$

for some complex numbers $w_{1}, w_{2}, \ldots, w_{k}$.

Problem 7 (pointwise limits—real functions) This problem is provided as contrast with the assertion that a pointwise limit of holomorphic functions converging uniformly on compact subsets is holomorphic (Theorem 5.2 of Chapter 2 of Stein 8 Shakarchi).
(a) Consider the function $\eta_{0}: \mathbb{R} \rightarrow[0, \infty)$ by

$$
\eta_{0}(x)= \begin{cases}e^{-\frac{1}{1-x^{2}}}, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Plot η_{0} and show $\eta_{0} \in C^{\infty}(\mathbb{R})$.
(b) For $k=1,2,3, \ldots$, let $\eta_{k}: \mathbb{R} \rightarrow[0, \infty)$ by

$$
\eta_{k}(x)=k \eta_{0}(k x)
$$

Plot η_{k} and compute

$$
\int_{\mathbb{R}} \eta_{k}
$$

Hint: Your answer will be in terms of the positive constant

$$
\int_{\mathbb{R}} \eta_{0}
$$

(c) Consider $u_{k}: \mathbb{R} \rightarrow[0, \infty)$ by

$$
u_{k}(x)=\int_{\xi \in \mathbb{R}} \eta_{k}(\xi)|x-\xi|
$$

Plot u_{k} and show that as k tends to infinity, u_{k} converges uniformly on all of \mathbb{R} to a well-known function $u: \mathbb{R} \rightarrow[0, \infty)$. Show that $u \in C^{0}(\mathbb{R}) \backslash C^{1}(\mathbb{R})$.

Problem 8 (S\&S Chapter 2 Exercise 6) Let Ω be an open subset of \mathbb{C} with $z_{0} \in \Omega$ and $f: \Omega \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ holomorphic. Show that if \mathcal{U} is an open triangular domain with

$$
z_{0} \in \mathcal{U} \subset \overline{\mathcal{U}} \subset \Omega
$$

and there exists some M such that

$$
\begin{equation*}
|f(z)| \leq M \quad \text { for } z \in \mathcal{U} \tag{8}
\end{equation*}
$$

then

$$
\int_{\alpha} f=0
$$

where α is a parameterization of the triangular contour $\partial \mathcal{U}$.
Note that this problem is related to Problem 3 on removable singularities above. How does condition (8) relate to (1)?

Problem 9 (S®SS Chapter 2 Exercise 8) Consider the strip $\Omega=\{z \in \mathbb{C}:|\operatorname{Im} z|<$ 1\}. If $f: \Omega \rightarrow \mathbb{C}$ is holomorphic and there are positive real numbers M and μ so that

$$
|f(z)| \leq M(1+|z|)^{\mu} \quad \text { for } z \in \Omega
$$

then show that for each $n=1,2,3, \ldots$, there is a positive real number M_{n} for which

$$
\left|f^{(n)}(x)\right| \leq M_{n}(1+|x|)^{\mu} \quad \text { for } x \in \mathbb{R}
$$

Problem 10 (S83S Chapter 2 Exercise 9) Let Ω be an open bounded subset of \mathbb{C} and consider a holomorphic function $\phi: \Omega \rightarrow \Omega$. Prove the following: If there exists some $z_{0} \in \Omega$ for which

$$
\phi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \phi^{\prime}\left(z_{0}\right)=1
$$

then there exist constants $a, b \in \mathbb{C}$ such that $\phi(z)=a z+b$. Hint(s):
(a) Reduce to the case $z_{0}=0$.
(b) Use analyticity to write

$$
\phi(z)=z+a_{N} z^{N}+O\left(z^{N+1}\right) \quad \text { as } z \rightarrow 0
$$

and some $N>1$.
(c) Consider the k-fold composition $f_{k}(z)=\phi \circ \phi \circ \cdots \circ \phi$ and show

$$
f_{k}(z)=z+k a_{N} z^{N}+O\left(z^{N+1}\right)
$$

(d) Take the limit as k tends to ∞ to conclude $a_{N}=0$. Notice $\left|f_{k}^{(N)}(0)\right|$ tends to ∞ if $a_{N} \neq 0$.

