
Assignment 6: Cauchy’s Theorem(s)
Due Tuesday March 22, 2022

John McCuan

March 30, 2022

Problem 1 (Dan Romik’s notes: The Fundamental Theorem of Algebra) Let us re-
turn to part (j) of Problem 1 of Assignment 5. Recall that this concerns a monic
quadratic polynomial p(z) = a0 + a1z + z2 under the assumptions

(i) a0 6= 0,

(ii) a1 6= 0, and

(iii) a21 6= 4a0.

Notice that p(0) = a0. In particular, for r = 0

{p(reit) : 0 ≤ t ≤ 2π} = {a0} ∈ C\{0}.

The objective here is to use a “blow-up” argument to understand

Γ0 = {p(ǫeit) : 0 ≤ t ≤ 2π}

for ǫ > 0 small. If you need to review the overall elements of Romik’s approach and
the context of these problems, you can look back at Problem 1 of Assignment 5.

Consider for ǫ > 0 the curve

Cǫ =

{(

1

ǫ

)

[

p(ǫeit)− a0
]

: 0 ≤ t ≤ 2π

}

,

parameterized by

βǫ(t) =
1

ǫ

[

p(ǫeit)− a0
]

for 0 ≤ t ≤ 2π
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and the parameterized curve/circle β0 : [0, 2π] → C by

β0(t) = a1e
it.

The curve Cǫ is called a (normalized) “blow-up” of the image curve Γ0. The idea is
that as ǫ ց 0, the curve Γ0 = Γ0(ǫ) is getting “very small” and “very close” to the
point {a0}. The blow-up allows us to see what Γ0 looks like on a fixed visible scale in
order to see the geometry of the limit.

(a) Show that
lim
ǫց0

p(ǫeit) = a0

uniformly in t ∈ [0, 2π].

(b) For k = 0, 1, 2, . . ., let us define the Ck norm on the (real) differentiability space
Ck([0, 2π] → C) by

‖β − β0‖Ck =

k
∑

j=0

max{|β(j)(t)− β
(j)
0 (t)| : 0 ≤ t ≤ 2π}.

Show
lim
ǫց0

‖βǫ − β0‖Ck = 0

uniformly in t ∈ [0, 2π].

(c) What does part (b) above tell you about the image Γ0 for ǫ > 0 small?

(d) Prove that for ǫ > 0 small enough,

∫

α

1

z
= 0

where α(t) = p(ǫeit) for 0 ≤ t ≤ 2π. Hint: If you have trouble with part (d)
here, go on to Problem 2 below, and come back to this one.
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Problem 2 (Dan Romik’s notes: The Fundamental Theorem of Algebra) Here we
revisit the case k = 1 of Problem 1 of Assignment 5, and part (k) in particular.
Remember we wish to calculate

∫

α

1

z

where α(t) = a0 + a1re
it for 0 ≤ t ≤ 2π and where a0 and a1 are nonzero complex

numbers. Let us assume Re(a0) ≥ 0 and 0 < r < r0 = |a0|/|a1|.

(a) Note there is a branch of the logarithm log : Ω → C given by

log z = log |z|+ i arg(z)

on an appropriate domain containing Γ = {α(t) : 0 ≤ t ≤ 2π}.

(b) Conclude
∫

α

1

z
= 0.

Hint: You have a primitive.

(c) If you attempt to calculate

∫

α

1

z
=

∫ 2π

0

1

a0 + reit
ireit dt

directly, then in principle, you should be able to write down a formula for a
function g : [0, 2π] → C for which g(0) = g(2π) and

g′(t) =
1

a0 + reit
ireit

though this may not be so easy. Determine conditions on r and a0 for which

arg(z) = tan−1 Im(z)

Re(z)
for z = a0 + reit, 0 ≤ t ≤ 2π,

and find an expression for the function g under these conditions.
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Problem 3 (removable singularities and Taylor’s formula) Let Ω be an open subset
of C with z0 ∈ Ω. A holomorphic function f : Ω\{z0} → C is said to have an isolated
singularity at z0.

We will later prove the following result:

Theorem 1 If f has an isolated singularity at z0 ∈ Ω and

lim
z→z0

(z − z0)f(z) = 0, (1)

then there exists an extension g : Ω → C with g holomorphic and

g∣
∣

z∈Ω\{z0}

= f. (2)

Conversely, if f has an isolated singularity at z0 ∈ Ω and there exists an extension
g : Ω → C such that g is holomorphic and (2) holds, then (1) holds as well.

An isolated singularity satisfying one of the equivalent conditions (1) or (2) is called
a removable singularity.

For this problem, let h : Ω → C be holomorphic and consider a point z0 ∈ Ω. The
point is to obtain a Taylor expansion formula for h.

(a) Apply Theorem 1 to the function f : Ω\{z0} → C by

f(z) =
h(z)− h(z0)

z − z0

to obtain a holomorphic function g1 : Ω → C for which

h(z) = h(z0) + g1(z)(z − z0).

(b) What is g1(z0)?

(c) Apply Theorem 1 to appropriate functions to obtain holomorphic functions gj :
Ω → C for j = 2, 3, 4, . . . such that

gj(z) = gj(z0) + gj+1(z)(z − z0).

(d) Conclude

h(z) =

N
∑

n=0

h(n)(z0)

n!
(z − z0)

n + gN+1(z)(z − z0)
N+1.
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Solution:

(a) The function f : Ω\{z0} → C defined by

f(z) =
h(z)− h(z0)

z − z0

satisfies (1) because

lim
z→z0

(z − z0)f(z) = lim
z→z0

[h(z)− h(z0)] = 0,

and h is continuous. Therefore Theorem 1 applies, and we can take g1 = g from
the theorem so that for z 6= z0

h(z)− h(z0)

z − z0
= g1(z).

Thus,
h(z) = h(z0) + g1(z)(z − z0),

and this equality clearly also holds for z = z0.

(b) Since g1 is continuous at z0 and equal to the difference quotient away from z0,
we have

g1(z0) = lim
z→z0

g1(z) = h′(z0).

(c) Since g1 is holomorphic, just like h, we can take f : Ω\{z0} → C by

f(z) = f2(z) =
g1(z)− g1(z0)

z − z0

and apply the same argument as in part (a) to get

g1(z) = g1(z0) + g2(z)(z − z0).

Note that from part (b) we also get g2(z0) = g′1(z0). This is interesting of course
because it does not mean g2(z0) = h′′(z0). Plugging back in to our definition
of f2 we get something like

g2(z) = f2(z) =
h(z)− h(z0)− h′(z0)(z − z0)

(z − z0)2
.
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Obviously, if we knew the Taylor expansion formula already (or even the next
step of the calculation we are presently making) we could get

g2(z0) =
h′′(z0)

2
.

Question: Whence cometh the factor of 2!?

In any case, I think it’s clear now that

gj(z) = gj(z0) + gj+1(z)(z − z0)

follows by induction if we set

fj+1(z) =
gj(z)− gj(z0)

z − z0

to get a function fj+1 : Ω\{z0} → C with an isolated singularity at z0 to which
Theorem 1 applies giving a holomorphic function gj+1 = g. We’ll also always
get gj+1(z0) = g′j(z0).

(d) We’ve got so far that
h(z) = h(z0) + g1(z)(z − z0)

with g1(z0) = h′(z0) and

h(z) = h(z0) + h′(z0)(z − z0) + g2(z)(z − z0)
2. (3)

This is a good start for the induction, and while we’re at it, let’s note that we
can differentiate (3) to get

h′(z) = h′(z0) + g′2(z)(z − z0)
2 + 2g2(z)(z − z0);

there’s the factor of 2! (!), and

h′′(z) = g′′2(z)(z − z0)
2 + 2g′2(z)(z − z0) + 2g2(z). (4)

Therefore,

g2(z0) =
h′′(z0)

2
as expected. It’s looking like it would be nice to have some kind of recursive
formula generalizing (4). Let’s see what we can do:

h(N+1)(z) =

N+1
∑

n=0

(

N + 1
n

)

(N + 1)!

(N + 1− n)!
g
(N+1−n)
N+1 (z)(z − z0)

N+1−n (5)
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with

h(k)(z) =
N
∑

n=k

h(n)(z0)

(n− k)!
(z − z0)

n−k

+

k
∑

n=0

(

k
n

)

(N + 1)!

(N + 1− n)!
g
(k−n)
N+1 (z)(z − z0)

N+1−n (6)

for 0 ≤ k ≤ N . I’ll admit that I needed to write this down on scratch paper to
get a reasonable inductive hypothesis. (It may not be quite correct yet, but it
should be in the right direction, and if I (or you) read through it once it should
be easilly corrected.)

Here’s the induction: Given

h(z) =

N
∑

n=0

h(n)(z0)

n!
(z − z0)

n + gN+1(z)(z − z0)
N+1 (7)

satisfying also (5) and (6) so that in particular,

gN+1(z0) =
h(N+1)(z0)

(N + 1)!
,

we get from part (c) above

gN+1(z) = gN+1(z0) + gN+2(z)(z − z0).

Substituting this into (7) we find

h(z) =
N
∑

n=0

h(n)(z0)

n!
(z − z0)

n + gN+1(z0)(z − z0)
N+1 + gN+2(z)(z − z0)

N+2

=

N+1
∑

n=0

h(n)(z0)

n!
(z − z0)

n + gN+2(z)(z − z0)
N+2.

That was easy. Of course, now we need to verify the derivative values induc-
tively. That’s a little unpleasant, but modulo typos it does seem to work out.
Differentiating we get

h′(z) =

N
∑

n=1

h(n)(z0)

(n− 1)!
(z − z0)

n−1

+ g′N+2(z)(z − z0)
N+2 + (N + 2)gN+2(z)(z − z0)

N+1
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which is the case k = 1 of (6) with N replaced by N + 1. We also have the
case k = 0 of course. For k ≤ N , we may rely on a secondary induction on k to
obtain

hk+1(z) =

N+1
∑

n=k+1

h(n)(z0)

(n− k − 1)!
(z − z0)

n−k−1

+
k

∑

n=0

(

k
n

)

(N + 2)!

(N + 2− n)!
g
(k+1−n)
N+2 (z)(z − z0)

N+2−n

+

k
∑

n=0

(

k
n

)

(N + 2)!

(N + 1− n)!
g
(k−n)
N+2 (z)(z − z0)

N+1−n

=
N+1
∑

n=k+1

h(n)(z0)

[n− (k + 1)]!
(z − z0)

n−(k+1) + g
(k+1)
N+2 (z)(z − z0)

N+2

+
k

∑

n=1

(

k
n

)

(N + 2)!

(N + 2− n)!
g
(k+1−n)
N+2 (z)(z − z0)

N+2−n

+

k
∑

n=1

(

k
n− 1

)

(N + 2)!

(N + 2− n)!
g
(k+1−n)
N+2 (z)(z − z0)

N+2−n

+
(N + 2)!

(N + 1− k)!
gN+2(z)(z − z0)

N+1−k

=

N+1
∑

n=k+1

h(n)(z0)

[n− (k + 1)]!
(z − z0)

n−(k+1) + g
(k+1)
N+2 (z)(z − z0)

N+2

+
k

∑

n=1

(

k + 1
n

)

(N + 2)!

(N + 2− n)!
g
(k+1−n)
N+2 (z)(z − z0)

N+2−n

+
(N + 2)!

(N + 1− k)!
gN+2(z)(z − z0)

N+1−k

=
N+1
∑

n=k+1

h(n)(z0)

[n− (k + 1)]!
(z − z0)

n−(k+1)

+

k+1
∑

n=0

(

k + 1
n

)

(N + 2)!

(N + 2− n)!
g
(k+1−n)
N+2 (z)(z − z0)

N+2−n.

This is (6) with N replaced with N + 1 and k replaced with k + 1. Evaluating
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this with k = N we see

hN+1(z) = h(N+1)(z0)+
N+1
∑

n=0

(

N + 1
n

)

(N + 2)!

(N + 2− n)!
g
(N+1−n)
N+2 (z)(z− z0)

N+2−n.

Differentiating one last time:

hN+2(z) =

N+1
∑

n=0

(

N + 1
n

)

(N + 2)!

(N + 2− n)!
g
(N+2−n)
N+2 (z)(z − z0)

N+2−n

+

N+1
∑

n=0

(

N + 1
n

)

(N + 2)!

(N + 1− n)!
g
(N+1−n)
N+2 (z)(z − z0)

N+1−n

= g
(N+2)
N+2 (z)(z − z0)

N+2

+
N+1
∑

n=1

(

N + 1
n

)

(N + 2)!

(N + 2− n)!
g
(N+2−n)
N+2 (z)(z − z0)

N+2−n

+

N+1
∑

n=1

(

N + 1
n− 1

)

(N + 2)!

(N + 2− n)!
g
(N+2−n)
N+2 (z)(z − z0)

N+2−n

+ (N + 2)! gN+2(z)

=
N+2
∑

n=0

(

N + 2
n

)

(N + 2)!

(N + 2− n)!
g
(N+2−n)
N+2 (z)(z − z0)

N+2−n.

This is (5) with N replaced with N+1, and this completes the induction. �

Problem 4 (Liouville’s theorem) Let f : C → C be an entire function. Assume f
satisfies a sequential growth estimate as follows: There is a sequence of radii Rj

j = 1, 2, 3, . . . with Rj ր ∞ such that

|f(z)| < 3

√

|z| for |z| = Rj .

Assume also an integral conformal factor estimate

|f ′(z)| ≤

∣

∣

∣

∣

1

2π

∫

ζ=α

f(ζ)

|ζ − z|3/2

∣

∣

∣

∣

where α parameterizes ∂Dr(z) for any z ∈ C.
Prove f is constant.
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Problem 5 (Complex power series) Let Ω be an open subset of C with z0 ∈ C, and
let f : Ω → C be a function. Show that if f is complex analytic at z0 ∈ Ω, i.e.,
there is some r > 0 for which Dr(z0) ⊂ Ω and

f(z) =

∞
∑

n=0

an(z − z0)
n for z ∈ Dr(z0),

then the coefficients an for n = 0, 1, 2, 3, . . . are uniquely determined.

Problem 6 (algebra) Use the fundamental theorem of algebra, as in the proof of
Corollary 4.7 of Chapter 2 in Stein and Shakarchi, to prove that every polynomial

p(z) =

k
∑

n=0

anz
n

with ak 6= 0 can be written as

p(z) = ak

k
∏

n=1

(z − wj)

for some complex numbers w1, w2, . . . , wk.
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Problem 7 (pointwise limits—real functions) This problem is provided as contrast
with the assertion that a pointwise limit of holomorphic functions converging uni-
formly on compact subsets is holomorphic (Theorem 5.2 of Chapter 2 of Stein &
Shakarchi).

(a) Consider the function η0 : R → [0,∞) by

η0(x) =

{

e
− 1

1−x2 , |x| < 1
0, |x| ≥ 1.

Plot η0 and show η0 ∈ C∞(R).

(b) For k = 1, 2, 3, . . ., let ηk : R → [0,∞) by

ηk(x) = k η0(kx).

Plot ηk and compute
∫

R

ηk.

Hint: Your answer will be in terms of the positive constant
∫

R

η0.

(c) Consider uk : R → [0,∞) by

uk(x) =

∫

ξ∈R

ηk(ξ)|x− ξ|.

Plot uk and show that as k tends to infinity, uk converges uniformly on all of R
to a well-known function u : R → [0,∞). Show that u ∈ C0(R)\C1(R).

Problem 8 (S&S Chapter 2 Exercise 6) Let Ω be an open subset of C with z0 ∈ Ω
and f : Ω\{z0} → C holomorphic. Show that if U is an open triangular domain with

z0 ∈ U ⊂ U ⊂ Ω

and there exists some M such that

|f(z)| ≤ M for z ∈ U , (8)
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then
∫

α

f = 0

where α is a parameterization of the triangular contour ∂U .
Note that this problem is related to Problem 3 on removable singularities above.

How does condition (8) relate to (1)?

Problem 9 (S&S Chapter 2 Exercise 8) Consider the strip Ω = {z ∈ C : | Im z| <
1}. If f : Ω → C is holomorphic and there are positive real numbers M and µ so that

|f(z)| ≤ M(1 + |z|)µ for z ∈ Ω,

then show that for each n = 1, 2, 3, . . ., there is a positive real number Mn for which

|f (n)(x)| ≤ Mn(1 + |x|)µ for x ∈ R.

Problem 10 (S&S Chapter 2 Exercise 9) Let Ω be an open bounded subset of C and
consider a holomorphic function φ : Ω → Ω. Prove the following: If there exists some
z0 ∈ Ω for which

φ(z0) = z0 and φ′(z0) = 1,

then there exist constants a, b ∈ C such that φ(z) = az + b. Hint(s):

(a) Reduce to the case z0 = 0.

(b) Use analyticity to write

φ(z) = z + aNz
N +O(zN+1) as z → 0

and some N > 1.

(c) Consider the k-fold composition fk(z) = φ ◦ φ ◦ · · · ◦ φ and show

fk(z) = z + kaNz
N +O(zN+1).

(d) Take the limit as k tends to ∞ to conclude aN = 0. Notice |f
(N)
k (0)| tends to ∞

if aN 6= 0.
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