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Problem 1 (Dan Romik’s notes: The Fundamental Theorem of Algebra) The nom-
inal objective of this problem is consideration of the fundamental theorem of algebra
which states that any non-constant polynomial

p(z) =

k
∑

n=0

anz
n

with complex coefficients a0, a1, . . . , ak has a complex root. A polynomial, of course,
considered as a complex function is an entire (holomorphic) mapping. The more
relevant utility of the problem for us is that it involves

(1) some (interesting) considerations concerning general complex mappings, e.g.,
continuity and multiplicity,

(2) the careful consideration of the Riemann surfaces associated with the simple
power polynomials p(z) = zk,

(3) introducing deformations (or the homotopy) of curves,

(4) some interesting estimates involving complex numbers, and

(5) the winding number of a curve with respect to a point.

It’s a pretty impressive list. I anticipate that in order to do this in a reasonable way,
we’ll only be able to do it in small pieces over two or three assignments. This is the
first piece.
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Let us simplify all our considerations by noting that we can assume the polynomial
p is monic, i.e,, the leading coefficient ak satisfies ak = 1. Similarly, we can consider
a preliminary simple case in which the constant term a0 = 0. In this case, z = 0 is a
root, so we can henceforth assume a0 6= 0.

The general idea is pretty simple: We consider a simple explicit deformation of a
circle in the domain:

h(t; r) = reit for for (t, r) ∈ [0, 2π]× [ǫ, R]

where ǫ and R are positive numbers. We will find explicit values of ǫ and R later
satisfying ǫ < R. You can think of ǫ as “small” or close to zero and R as “large.”
Given this deformation, the composition p ◦ h also represents a continuous deforma-
tion of an “initial” curve Γ0 parameterized by γ0(t) = p ◦ h(t; ǫ) to a final curve Γ1

parameterized by γ1(t) = p ◦ h(t;R). With this framework in hand, our strategy to
prove the fundamental theorem of algebra is roughly as follows:

(i) Γ0 is a curve all the points of which are close to the point a0 6= 0, and this implies
Γ0 does not “wind around the origin.”

(ii) ΓR (for R large) is a curve which does “wind around the origin.”

(iii) At some point in the second deformation H = p ◦ h, there is some (t0, r0) for
which p(h(t0; r0)) = 0, and thus, h(t0, r0) is a root of p.

A few notes about this outline: We’ll want to get careful estimates when we verify (i)
and (ii). In some cases, like in this first installment, we will want to see everything
pretty explicitly or as explicitly as possible. Also, for parts (i) and (ii) we’ll eventually
need to understand precisely what it means for a curve to “wind around” the origin,
and we’ll need to know how to measure that. That’s where the winding number
comes in. Assertion (iii) may seem kind of obvious, but I would suggest that it’s
really not. Of course, I can’t give you an example of a continuous deformation of
γ0(t) = 2 + eit to γ1(t) = eit with no point mapping to the origin, but on the other
hand, there is no kind of “intermediate value theorem” we can apply directly to this
kind of question. (Maybe there should be, and you can become famous by formulating
it.)

Enough with the preliminaries; let’s try to get down to work. We can imagine we
are going to attempt a kind of tedious induction. The base case would involve

p(z) = a0 + z

with k = 1.
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(a) Determine initial and terminal radii ǫ and R for which the argument (i.e., Romik’s
argument) works in the case k = 1 with p(z) = a0 + z.

(b) Draw the image curves associated with the deformation a0 + reit and find the
values (t0, r0) corresponding to a solution. Hint: I guess you’ll need a branch of
the complex logarithm to do this.

(c) When k = 2 we have p(z) = a0 + a1z + z2 where a0 6= 0. Complete the square to
show it is enough to find a root of a polynomial q(w) = b0 + w2 for appropriate
choices of b0 and w.

(d) Again in the case k = 2, if b0 6= 0, write

q(w) = b0[1 + (c0w)
2]

for an appropriate choice of c0 6= 0. Plot The following curves

(i) {1 + (c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with 0 < r < 1/|c0|. Hint: c0 =

|c0|eiArg(c0).

(ii) {1 + (c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with r = 1/|c0|. Find the root of q

(corresponding to a particular value of t) in this case, and find the root of
the original polynomial p.

(iii) {1 + (c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with r > 1/|c0|.

(e) Let R denote the Riemann surface for z2, and consider the special polynomial
q0 : C → R by q0(z) = z2 as a function from C into its natural domain R. Plot
the image curve

{

q0
(

reit
)

∈ R : 0 ≤ t ≤ 2π
}

for r fixed with r > 0.

(f) Repeat part (d) with the following modification: Consider the curve as an image
in a Riemann surface with two sheets and a branch cut at z = 1. Do you find
two values of t for the curve of part (ii)?

(g) How can your plots of parts (d) and (f) be modified to plot the full images

{q(reit) : 0 ≤ t ≤ 2π}

for q?
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(h) Again in the case k = 2 as introduced in part (c), if b0 = 0, show that you can
write

p(z) =
a21
4
(1 + c0z)

2

for an appropriate choice of c0. Plot The following curves

(i) {(1 + c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with 0 < r < 1/|c0|.

(ii) {(1 + c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with r = 1/|c0|. Find the root of p

(corresponding to a particular value of t) in this case.

(iii) {(1 + c0re
it)2 : 0 ≤ t ≤ 2π} for r fixed with r > 1/|c0|.

(i) Repeat part (h) with the images in the Riemann surface R for z2.

(j) Consider the polynomial p(z) = a0 + a1z + z2 under the assumptions

(i) a0 6= 0,

(ii) a1 6= 0, and

(iii) a21 6= 4a0.

Show that under these assumptions you can write

p(z) = b0

[

a21
4b0

(c0z + 1)2 + 1

]

for appropriate choices of b0 and c0. Plot the image curve

Γr = {p(reit) : 0 ≤ t ≤ 2π}

for r fixed.

(k) Returning to the case k = 1 of parts (a) and (b), calculate

1

2πi

∫

γ

1

z

where γ(t) = p(reit) = a0 + a1re
it for 0 ≤ t ≤ 2π with r 6= r0.
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Problem 2 (Boundary Behavior and Mapping) Consider the complex tangent func-
tion defined by

tan z =
sin z

cos z
. (1)

(a) This is not an entire function. What is the domain Ωp in C where tan is finite
valued?

(b) What is a fundamental domain for tan, i.e., a domain Σ ⊂ C on which

tan : Σ → C

is one-to-one and onto?

(c) Where are the branch points in the image of

tan : Ωp → C?

(d) What is the image Ω ⊂ Σ of the unit disk D1(0) under the complex arctangent
function?

(e) Denote by tan−1 : D1(0) → Ω, and prove that

d

dw
tan−1w =

1

1 + w2
.

Hint: tan(tan−1w) = w and it’s still true that

d

dz
tan z = sec2 z

by the quotient rule.

(f) Show tan−1 has a power series expansion (with radius of convergence R = 1) on
D1(0). Hint: Find the series expansion for the derivative, then formally obtain
a candidate series representing a holomorphic function f : D1(0) → C using
termwise integration. You’ll need something like Corollary 3.4 in Chapter 1 of
Stein and Shakarchi to conclude f(w) = tan−1w or, alternatively, Problem 10
of Assignment 4.
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Problem 3 (Abel Limit Point Theorem; Problem 4 of Assignment 4) Go back and
consider the series

f(w) =

∞
∑

n=1

(−1)n−1

n
wn (2)

of Problem 4 of Assignment 4.

(a) Find the image of D1(0) under f(w) = log(1 + w).

(b) Use Corollary 3.4 in Chapter 1 of Stein and Shakarchi or, alternatively, Prob-
lem 10 of Assignment 4 to conclude f(w) = log(1 + w). Hint:

elog(1+w) = 1 + w.

(c) It’s always1 worth repeating: What is the sum of the alternating harmonic series?

Problem 4 (Complex Logarithm)

(a) Explain how to define a function arg : C → [0, 2π) giving the argument of a
complex number using a branch of the complex logarithm.

(b) Explain how to define a function arg : C → (−π, π] giving the argument of a
complex number using a branch of the complex logarithm.

(c) The documentation for Mathematica says that the standard Mathematica imple-
mentation of the complex logarithm Log has a “branch cut discontinuity” in the
complex plane running from −∞ to 0. Can you guess what results from the
Mathematica command

Plot[Im[Log[Cos[t] + I Sin[t]]], {t, -2 Pi, 2 Pi}]

without actually executing the command? (Note: Im is the standard function in
Mathematica for taking the imaginary part of a complex number and I is the
Mathematica notation for i ∈ C.)

(d) How could you use the standard Mathematica commands Log and Im to create a
function (in Mathematica) giving the argument of part (a) above?

1The “three R’s of learning” are “Repetition, repetition, and repetition.”
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(e) Let Σj = {x+iy ∈ C : jπ < y ≤ (j+1)π} for j ∈ Z = {0,±1,±2,±3, . . .}, and let
logj : C\{0} → Σj denote the branch of the complex logarithm corresponding to
the strip Σj for j ∈ Z. How could you use the standard Mathematica command
Log to create a function (in Mathematica) giving the function logj? Incidentally,
Log[-1] returns iπ in Mathematica.

Problem 5 (Complex Arctangent) The documentation for Mathematica says that the
standard Mathematica implementation of the complex arctangent ArcTan has “branch
cut discontinuities” in the complex plane running from −∞i to −i and from +∞i to
i.

In addition the implementation ArcTan can take alternatively two arguments so
that

ArcTan[z,w] is equivalent to Im[Log[z+iw]].

What is the relation between ArcTan[z,w] and ArcTan[z+iw]?

Problem 6 (S&S Exercise 2.1, Gaussian and Fresnel Integrals)

(a) Prove
∫ ∞

0

e−x2

dx =

√
π

2
.

Hint(s): This has nothing to do with complex analysis. Consider the square

(
∫ R

0

e−x2

dx

)2

=

(
∫ R

0

e−x2

dx

)(
∫ R

0

e−y2 dy

)

.

Write this as an iterated integral and then an area integral over an appropriate
region in R2. Change to polar coordinates. Evaluate and take the limit as
R ր ∞.

(b) Consider the real integrals

∫ R

0

cos(x2) dx and

∫ R

0

sin(x2) dx.

Explain why it might be reasonable to expect the limits

lim
Rր∞

∫ R

0

cos(x2) dx and lim
Rր∞

∫ R

0

sin(x2) dx

exist. Hint: Plot cos(x2) and sin(x2) on [0,∞).
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(c) Give explicit estimates in terms of a series to prove the limits

lim
Rր∞

∫ R

0

cos(x2) dx and lim
Rր∞

∫ R

0

sin(x2) dx

exist. Hint(s): Break up [0,∞) into intervals on which, for example, cos(x2)
maintains a single sign. Then estimate using an alternating series.

(d) Prove
∫ ∞

0

sin(x2) dx =

∫ ∞

0

cos(x2) dx =

√
2π

4
.

These are called Fresnel integrals. Hint: Compute the complex integral

∫

α

f

where f(z) = e−z2 and α is a (counterclockwise) parameterization of the bound-
ary of ΩR = {reiθ : 0 < r < R, 0 < θ < π/4}.
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Problem 7 (Goursat’s Theorem) For this problem you should use Goursat’s theorem
as stated in S&S:

Theorem 1 (Goursat’s theorem) If f : Ω → C is complex differentiable and U is a
triangular domain with boundary a triangle

T = ∂U with T ∪ U = U ⊂ Ω,

then
∫

α

f = 0

where α : [a, b] → T is a parameterization of the triangle T = ∂U .

(a) Given three cyclically concatenated segments in the plane (real or complex) by
which we mean there are three (distinct) points a, b and c with segments param-
eterized by

γ(t) = (1− t)a+ tb, (3)

α(t) = (1− t)b+ tc, and (4)

β(t) = (1− t)c+ ta, (5)

each defined for 0 ≤ t ≤ 1, these segments2 always bound a triangular domain
U with boundary a triangle. Give examples where four concatenated segments
bound a (connected) quadrilateral domain, and give examples in which four con-
catenated segments bound something more complicated.

(b) Use Goursat’s theorem to prove the following:

Theorem 2 (Quadrilateral Goursat theorem) If f : Ω → C is complex differen-
tiable and V is a connected quadrilateral domain with boundary a quadrilateral

Q = ∂V with Q ∪ V = V ⊂ Ω,

then
∫

α

f = 0

where α : [a, b] → Q is a parameterization of the quadrilateral Q = ∂V.
2The parameterization α here is different from the parameterization α in the statement of Gour-

sat’s theorem above. Note that I’m loosely borrowing here notation from Euclidean/high school
geometry in which the side of a triangle opposite a given vertex shares a letter: Side a is opposite
angle A, side b is opposite angle B, and side c is opposite angle C. For me the side parameterized
by α is opposite the vertex a.
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(c) Formulate and prove a version of Theorem 2 for the case when there are four
concatenated segments in Ω, but they do not bound a connected quadrilateral.

Problem 8 (Goursat subdomains) This problem is about the proof of Goursat’s the-
orem; you should not use Goursat’s theorem in your solution.

Given an open set Ω ⊂ C, define a simple Goursat subdomain to be an open
set U for which the following hold:

(i) U ⊂ Ω,

(ii) ∂U is a closed curve/contour.3

(iii) There exists a fixed natural number ν and there exists a fixed scale µ ∈ (0, 1)
such that

U =

ν
⋃

j=1

Uj

for some subdomains U1,U2, . . . ,Uν ⊂ U satisfying

(iv) Uk ∩ Uj = φ for j 6= k,

(v)
H2

(

Uj ∩ Uk

)

= 0 for j 6= k,

where H2 denotes area measure on the plane,

(vi) Each Uj is geometrically similar to U with

Uj = {µz + wj : z ∈ U}

for some wj ∈ C, j = 1, 2, . . . , ν, and

(vii)
∫

α

f =
ν

∑

j=1

∫

αj

f (6)

where α is a counterclockwise parameterization of ∂U and αj is a counterclock-
wise parameterization of ∂Uj .

3By “contour” we mean a curve admitting a piecewise regular parameterization—a curve Γ that
can be used to construct a complex integral of a continuous function f : Γ → C.
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The trianglular domain is an example of a Goursat subdomain with ν = 4 and µ =
1/2. The rectangular domain is also an example of a Goursat subdomain with ν = 4
and µ = 1/2. Ahlfors proves Goursat’s theorem for a rectangular subdomain.

(a) Give an example of a Goursat subdomain with ν 6= 4 and/or µ 6= 1/2.

(b) Give an example of a Goursat subdomain which is not a triangular domain or a
rectangular domain.

(c) Can you prove either of properties (v) and/or (vii) of a simple Goursat subdo-
main follow from the other properties in the definition?

(d) If U is a simple Goursat subdomain in an open set Ω ⊂ C, then each set Uj for
j = 1, 2, . . . , ν is a Goursat subdomain in Ω.

(e) Prove Goursat’s theorem in the following form:

Theorem 3 (Goursat’s theorem) If f : Ω → C is complex differentiable and U
is a simple Goursat subdomain with respect to Ω, then

∫

α

f = 0

where α : [a, b] → Ω is a parameterization of ∂U and f : Ω → C is holomorphic.

Problem 9 (Goursat subdomains) Given an open set Ω ⊂ C, define a general
Goursat subdomain to be a domain U ⊂ C for which ∂U is a closed contour
and U ⊂ Ω with

f : Ω → C holomorphic =⇒
∫

α

f = 0

where α parameterizes Γ = ∂U and f : Ω → C is any holomorphic function.

(a) Prove the following result:

Theorem 4 The conformal image of a general Goursat subdomain is a general
Goursat subdomain in the following sense: If U is a general Goursat subdomain
in Ω and

(i) φ : Ω → W is a surjective holomorphic function onto an open set W ⊂ C,
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(ii) φ(U) = V for some open set V ⊂ W with ∂V a closed contour with param-
eterization β = φ ◦α with α a parameterization of ∂U as in the definition,

then
∫

β

f =

∫

α

f ◦ φ φ′ = 0

for any holomorphic function f : W → C.

(b) Prove any simple Goursat subdomain is a general Goursat subdomain.

(c) Prove a rectanglular domain R = {x + iy : 0 < x < a, 0 < y < b} in standard
position with respect to any open set containing

Rǫ = {x+ iy : −ǫ < x < a+ ǫ, −ǫ < y < b+ ǫ}

for any ǫ > 0 is both a simple and a general Goursat subdomain.

(d) Given any open set Ω ⊂ C, prove any quadrilateral Q with Q ⊂ Ω is a general
Goursat subdomain with respect to Ω.
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Problem 10 (Goursat’s theorem with extra regularity; S&S Chapter 2 Exercise 5)
This is about the proof of Goursat’s theorem, so you should not use Goursat’s theorem
to solve the problem.

In my notes on integration I discuss first the integral of a (continuous) real valued
function f : Γ → R defined on a regular curve Γ ⊂ R2. Such an integral on a curve
requires no orientation, but both the integrand in

∫

Γ

f

may have a special form involving orientation and the curve may involve orientation.
Two important examples of this involve a simple closed curve Γ which, by the Jordan
curve theorem is the boundary of a unique bounded open set U ⊂ R2 and a vector field
which is a function v : U → R2. The vector field will also be assumed to be continuous,
and the component functions will be assumed to be continuously differentiable. The
first example of an integrand of special form is called a flux integral:

∫

∂U

v · n

where n is the outward unit normal to ∂U . Note that one still integrates on the
curve here as a set, but there is an implied orientation by the choice of the normal.
Associated with flux integrals is Gauss’ theorem (or the divergence theorem) in the
plane which states that

∫

∂U

v · n =

∫

U

div v.

The divergence operator can be given a nice invariant definition, but for our purposes
we can simply say

div v =
∂v1
∂x

+
∂v2
∂y

where v = (v1, v2).
The second “special form” integral is a circulation integral:

∫

∂U

T · v

where T is a counterclockwise unit tangent vector—the tangent vector of a coun-
terclockwise arclength parameterization—on ∂U . Associated with these integrals is
Green’s theorem which states

∫

∂U

T · v =

∫

U

(

∂v2
∂x

− ∂v1
∂y

)

.
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(a) Show the divergence theorem in the plane implies Green’s theorem.

(b) Show Green’s theorem implies the divergence theorem in the plane.

(c) Use the divergence theorem in the plane to show the following:

Theorem 5 (Goursat’s theorem for the bounded component of the complement
of a simple closed curve) Given f : Ω → C holomorphic and U ⊂ Ω where U
is the bounded component of the complement of a simple closed curve Γ = ∂Ω
with f = u+ iv as usual with u, v ∈ C1(U) we have

∫

α

f = 0

where α is a (counterclockwise) parameterization of Γ.

(d) Use Green’s theorem to prove Theorem 5 above.

Note(s) on regularity: The quadrasection proof of Goursat’s theorem does not require
continuity of the partial derivatives of the real and imaginary parts of f . Technically,
when we say u, v ∈ C1(U) what we mean is that there is a larger open set containing
U and u and v are C1 functions on this larger open set. Certainly u, v ∈ C1(Ω) would
imply this condition.
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