Assignment 3: Power Series Due Tuesday February 8, 2022

John McCuan

February 4, 2022

Problem 1 (Antiholomorphic Functions) Remember that given a function $f : \Omega \to \mathbb{C}$ with f = u + iv and $u, v \in C^1(U)$, we say f is holomorphic on Ω if

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] = 0.$$

This condition is equivalent to the existence of the limit(s)

$$\lim_{\mathbb{C} \ni h \to 0} \frac{f(z+h) - f(z)}{h} \in \mathbb{C}$$

for every $z \in \Omega$.

Given $g: \Omega \to \mathbb{C}$ with $g = \tilde{u} + i\tilde{v}$ and $\tilde{u}, \tilde{v} \in C^1(U)$, we say g is antiholomorphic on Ω if

$$\frac{\partial g}{\partial z} = \frac{1}{2} \left[\frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} + i \left(\frac{\partial \tilde{v}}{\partial x} - \frac{\partial \tilde{u}}{\partial y} \right) \right] = 0 \qquad on \ \Omega.$$

- (a) Give a condition for g to be antiholomorphic in terms of the existence of the limit of a "difference quotient."
- (b) Given an antiholomorphic function g = ũ + iũ as above, compute the value of the limit of the "difference quotient" you defined in the previous part.

Problem 2 (Daniel's Antiholomorphic Functions) Recall that the function $h : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by h(z) = 1/z is holomorphic on the punctured plane and has values that can be written in the form

$$h(z) = \frac{\bar{z}}{|z|^2}$$

Let $g : \mathbb{C} \to \mathbb{C}$ be given by $g(z) = \overline{z}$.

- (a) Find another antiholomorphic function f for which $h = f \circ g = g \circ f$.
- (b) Choose a point $z_0 \in \{z \in \mathbb{C} : \operatorname{Re}(z), \operatorname{Im}(z) > 0\}$ and consider the curves $\gamma_1(t) = z_0 + t$ and $\gamma_2(t) = z_0 + it$ for $0 \le t \le 1$ along with the square $C = \{z_0 + s + it : 0 \le s \le 1\}$. Draw the following:
 - (i) The images of γ_1 and γ_2 and the square C.
 - (ii) The images of $f \circ \gamma_1$, $f \circ \gamma_2$, and f(C).
 - (iii) The images of $g \circ \gamma_1$, $g \circ \gamma_2$, and g(C).
 - (iv) The images of $h \circ \gamma_1$, $h \circ \gamma_2$, and h(C).

You may wish to use mathematical software (Something like Matlab, Mathematica, Maple, Octave, ...) in order to get a very accurate picture.

Problem 3 (Linear Mappings of \mathbb{R}^2) Let $L : U = \mathbb{R}^2 \to \mathbb{R}^2$ by L(x, y) = (u(x, y), v(x, y)) be linear. Consider $f : \Omega = \mathbb{C} \to \mathbb{C}$ with f = u + iv.

- (a) Classify all linear maps L for which f is holomorphic.
- (b) Classify all linear maps L for which f is antiholomorphic.

Problem 4 (S&S Exercise 1.12) Consider $f : \mathbb{C} \to \mathbb{C}$ by $f(x+iy) = \sqrt{|xy|}$. Show that f satisfies the Cauchy-Riemann equations at z = x + iy = 0, but f is not (complex) differentiable at z = 0.

Problem 5 (S&S Exercise 1.13) Show that the following are equivalent for a holomorphic function $f: \Omega \to \mathbb{C}$ with f = u + iv and $u, v \in C^1(U)$:

(i) f is constant on the open set Ω .

(ii) $f(\Omega) = \{f(z) : z \in \Omega\}$ is a subset of a line.

(iii) $f(\Omega) = \{f(z) : z \in \Omega\}$ is a subset of a circle.

Hint: Consider the case where $f(\Omega)$ lies in a vertical line.

Problem 6 (S&S Exercise 1.16) Find the radius of convergence of the following series:

(a)

$$\sum_{n=0}^{\infty} (\log n)^2 \ z^n.$$

(b)

$$\sum_{n=0}^{\infty} n! \ z^n.$$

(c)

$$\sum_{n=0}^{\infty} \frac{n^2}{4^n + 3n} \ z^n.$$

Problem 7 (S&S Exercise 1.17) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of coefficients in \mathbb{C} . If

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

exists as a real number in $(0, \infty)$, then (show) this is the Hadamard radius. Note: the quantity R here is the reciprocal of the quantity one would get from the ratio test. Hint: Stackexchange.

Problem 8 (S&S Exercise 1.16) Find the radius of convergence of the hypergeometric series:

$$F(\alpha, \beta, \gamma, z) = 1 + \sum_{n=1}^{\infty} \frac{c_n}{n!} z^n$$

where

$$c_n = \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{\gamma(\gamma+1)\cdots(\gamma+n-1)}.$$

Hint: Use the ratio test.

Problem 9 (S&S Exercise 1.18) Consider a power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

with radius of convergence R > 0. Show that f has a (convergent) power series expansion

$$f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

with center z_0 for any $z_0 \in D_R(0)$.

Problem 10 (S&S Exercise 1.20, Ahlfors Exercise 2.4.1) For each positive integer m = 1, 2, 3, ..., find the power series expansion for the function

$$f(z) = \frac{1}{(1-z)^m}$$

with center at the origin, and find the radius of convergence.