Assignment 3: Power Series Due Tuesday February 8, 2022

John McCuan

February 4, 2022

Problem 1 (Antiholomorphic Functions) Remember that given a function $f: \Omega \rightarrow \mathbb{C}$ with $f=u+i v$ and $u, v \in C^{1}(U)$, we say f is holomorphic on Ω if

$$
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left[\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}+i\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right]=0 .
$$

This condition is equivalent to the existence of the limit(s)

$$
\lim _{\mathbb{C} \ni h \rightarrow 0} \frac{f(z+h)-f(z)}{h} \in \mathbb{C}
$$

for every $z \in \Omega$.
Given $g: \Omega \rightarrow \mathbb{C}$ with $g=\tilde{u}+i \tilde{v}$ and $\tilde{u}, \tilde{v} \in C^{1}(U)$, we say g is antiholomorphic on Ω if

$$
\frac{\partial g}{\partial z}=\frac{1}{2}\left[\frac{\partial \tilde{u}}{\partial x}+\frac{\partial \tilde{v}}{\partial y}+i\left(\frac{\partial \tilde{v}}{\partial x}-\frac{\partial \tilde{u}}{\partial y}\right)\right]=0 \quad \text { on } \Omega
$$

(a) Give a condition for g to be antiholomorphic in terms of the existence of the limit of a "difference quotient."
(b) Given an antiholomorphic function $g=\tilde{u}+i \tilde{v}$ as above, compute the value of the limit of the "difference quotient" you defined in the previous part.

Problem 2 (Daniel's Antiholomorphic Functions) Recall that the function $h: \mathbb{C} \backslash\{0\} \rightarrow$ \mathbb{C} by $h(z)=1 / z$ is holomorphic on the punctured plane and has values that can be written in the form

$$
h(z)=\frac{\bar{z}}{|z|^{2}} .
$$

Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be given by $g(z)=\bar{z}$.
(a) Find another antiholomorphic function f for which $h=f \circ g=g \circ f$.
(b) Choose a point $z_{0} \in\{z \in \mathbb{C}: \operatorname{Re}(z), \operatorname{Im}(z)>0\}$ and consider the curves $\gamma_{1}(t)=$ $z_{0}+t$ and $\gamma_{2}(t)=z_{0}+$ it for $0 \leq t \leq 1$ along with the square $C=\left\{z_{0}+s+i t\right.$: $0 \leq s \leq 1\}$. Draw the following:
(i) The images of γ_{1} and γ_{2} and the square C.
(ii) The images of $f \circ \gamma_{1}, f \circ \gamma_{2}$, and $f(C)$.
(iii) The images of $g \circ \gamma_{1}, g \circ \gamma_{2}$, and $g(C)$.
(iv) The images of $h \circ \gamma_{1}, h \circ \gamma_{2}$, and $h(C)$.

You may wish to use mathematical software (Something like Matlab, Mathematica, Maple, Octave, ...) in order to get a very accurate picture.

Problem 3 (Linear Mappings of \mathbb{R}^{2}) Let $L: U=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $L(x, y)=(u(x, y), v(x, y))$ be linear. Consider $f: \Omega=\mathbb{C} \rightarrow \mathbb{C}$ with $f=u+i v$.
(a) Classify all linear maps L for which f is holomorphic.
(b) Classify all linear maps L for which f is antiholomorphic.

Problem 4 (SGSS Exercise 1.12) Consider $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(x+i y)=\sqrt{|x y|}$. Show that f satisfies the Cauchy-Riemann equations at $z=x+i y=0$, but f is not (complex) differentiable at $z=0$.

Problem 5 (S\&S Exercise 1.13) Show that the following are equivalent for a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ with $f=u+i v$ and $u, v \in C^{1}(U)$:
(i) f is constant on the open set Ω.
(ii) $f(\Omega)=\{f(z): z \in \Omega\}$ is a subset of a line.
(iii) $f(\Omega)=\{f(z): z \in \Omega\}$ is a subset of a circle.

Hint: Consider the case where $f(\Omega)$ lies in a vertical line.
Problem 6 (SKS Exercise 1.16) Find the radius of convergence of the following series:
(a)

$$
\sum_{n=0}^{\infty}(\log n)^{2} z^{n}
$$

(b)

$$
\sum_{n=0}^{\infty} n!z^{n}
$$

(c)

$$
\sum_{n=0}^{\infty} \frac{n^{2}}{4^{n}+3 n} z^{n}
$$

Problem 7 (SBुS Exercise 1.17) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of coefficients in \mathbb{C}. If

$$
R=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}
$$

exists as a real number in $(0, \infty)$, then (show) this is the Hadamard radius. Note: the quantity R here is the reciprocal of the quantity one would get from the ratio test. Hint: Stackexchange.

Problem 8 (S $6 S$ Exercise 1.16) Find the radius of convergence of the hypergeometric series:

$$
F(\alpha, \beta, \gamma, z)=1+\sum_{n=1}^{\infty} \frac{c_{n}}{n!} z^{n}
$$

where

$$
c_{n}=\frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{\gamma(\gamma+1) \cdots(\gamma+n-1)} .
$$

Hint: Use the ratio test.

Problem 9 (S $6 S$ Exercise 1.18) Consider a power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with radius of convergence $R>0$. Show that f has a (convergent) power series expansion

$$
f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

with center z_{0} for any $z_{0} \in D_{R}(0)$.
Problem 10 (S $3 S$ Exercise 1.20, Ahlfors Exercise 2.4.1) For each positive integer $m=1,2,3, \ldots$, find the power series expansion for the function

$$
f(z)=\frac{1}{(1-z)^{m}}
$$

with center at the origin, and find the radius of convergence.

