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Here is an alternative proof of the chain rule for a composition of holomorphic functions. It is based on
my previous solution of this problem but the argument is streamlined and the estimates are tightened. For
clarity with regard to the two arguments/solutions, let me point out that the invoking of differentiability
of the functions g and f (and the roles of δ1 and δ2) has been reversed.

Again I write down what I want to prove. That is,

(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h = ◦(h). (1)

This means precisely that

lim
h→0

(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h

h
= 0,

or for any ǫ > 0, there is some δ > 0 for which 0 < |h| < δ implies

∣

∣

∣

∣

(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h
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< ǫ. (2)

To this end, let ǫ > 0. Since f is differentiable at z, there is some δ1 > 0 for which 0 < |h| < δ1 implies
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f(z + h)− f(z)− f ′(z) h
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|g′(f(z))|+ 1

}

. (3)

As motivation for the choice of the positive tolerance appearing on the right in (3), let us consider the
estimation of the quantity on the left of (2) for any complex number h with |h| > 0. By the triangle
inequality
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(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h
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≤ Q2 +Q1

where
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(g ◦ f)(z + h)− (g ◦ f)(z)− g′(f(z)) k
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g′(f(z)) k − g′(f(z)) f ′(z) h
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and
k = f(x+ h)− f(x). (4)

Notice that

Q1 = |g′(f(z))|
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f(z + h)− f(z)− f ′(z) h
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and the factor on the right vanishes in the limit as h → 0. This is made quantitatively precise by our
estimate (3) so that for 0 < |h| < δ1 we know

Q1 <
ǫ

2
.

We wish now to obtain a similar estimate for Q2. In fact with our definition of k we see that the argument
f(z + h) = f(z) + k, so we can write

Q2 =

∣
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g(f(z) + k)− g(f(z))− g′(f(z)) k
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.

This looks rather like the definition of differentiability of g at f(z). In fact, for k = f(z + h)− f(z) = 0,
the quantity Q2 vanishes, and for k 6= 0, we can write

Q2 =
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g(f(z) + k)− g(f(z))− g′(f(z)) k
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f(z + h)− f(z)
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In order to estimate the factor
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we consider the condition (3) holding for 0 < |h| < δ1 and obtain
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f(z + h)− f(z)

h
− f ′(z)

∣
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+ |f ′(z)| < 1 + |f ′(z)|. (5)

Consequently, we invoke the definition of differentiability of g at f(z) in the following form: There exists
some δ2 for which the condition 0 < |µ| < δ2 on a complex number µ implies
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g(f(z) + µ)− g(f(z))− g′(f(z)) µ
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1 + |f ′(z)|
. (6)

In order for this to apply with µ = k = f(z + h)− f(z) we need |f(z + h)− f(z)| < δ2. Thus, we consider
once again (3) or alternatively (5). From these we see that if 0 < |h| < δ1, then

|k| = |f(z + h)− f(z)| < (1 + |f ′(z)|)|h|.

Therefore, we make the final specification

0 < |h| < δ = min

{

δ1,
δ2

1 + |f ′(z)|

}

.

If this condition holds |k| = |f(z+ h)− f(z)| < δ2. In particular, if k 6= 0, then (6) and (5) together imply
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g(f(z) + k)− g(f(z))− g′(f(z)) k
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f(z + h)− f(z)
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.

As mentioned above when k = 0, the inequality Q2 < ǫ/2 holds trivially. In all cases then we have
established that 0 < |h| < δ implies
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(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h
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≤ Q1 +Q2 < ǫ.

That is,
(g ◦ f)(z + h)− (g ◦ f)(z)− (g′ ◦ f)(z) f ′(z) h = ◦(h). �
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