
Assignment 2:

Topology and Complex Differentiability

Due Tuesday February 1, 2022

John McCuan

January 29, 2022

Problem 1 (open sets Stein pages 5-6) Remember that an open disk with center
z0 ∈ C and radius r > 0 is a set of the form

Dr(z0) = {z ∈ C : |z − z0| < r},

and a set U ⊂ C is open if for every point z ∈ U there is some r > 0 for which the
open disk Dr(z) ⊂ U .

(a) Show every open disk is open.

(b) Find a set A in C which is not open and such that its complement Ac = C\A is
also not open. That is, A is neither open nor closed.

(c) Find the diameter of
⋃

0<t<π/2

Det(e
teit).

Remember the diameter of a set S in C is defined to be

diam(S) = sup{|z1 − z2| : z1, zs ∈ S}.

Hint(s)/Suggestion(s): Work in the identification with R2. Try to draw a picture
of the domain using mathematical software. Parameterize the boundary of each
disk for 0 ≤ t ≤ π/2 by

γ(θ) = et[(cos t, sin t) + (cos θ, sin θ)].
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Find an envelope curve

η(t) = et[(cos t, sin t) + (cosφ(t), sinφ(t))]

for 0 ≤ t ≤ π/2 and an appropriate function φ : [0, π/2] → [0, π/2] for which

η′(t) and γ′(t) are parallel for each t.

(d) Stein defines the closure of a set A ⊂ C to be

A = A ∪ A∗

where A∗ is the set of limit points of A, i.e., the points z ∈ A for which there
is a sequence {zn}

∞

n=1 ⊂ A\{z} with

lim
n→∞

zn = z.

Show there is always a closed set containing any set A and the closure A is also
the intersection of all closed sets containing A:

A =
⋂

Uc⊃A, U open

U c.

Problem 2 (S&S Exercise 1.5) Given an open subset U in C, we say U is con-
nected if whenever U1 and U2 are open subsets of C with U = U1 ∪ U2, then one of
the following must hold

U1 ∩ U2 6= φ, U1 = φ, or U2 = φ.

Given an open subset U in C, we say U is path connected if whenever z1 and z2
are points in U , there exists a continuous function γ : [0, 1] → U such that γ(0) = z1
and γ(1) = z2. In this case, γ is called a path connecting z1 to z2 in U .

Show that if U is path connected, then U is connected. Hint(s): Assume by way
of contradiction that U = U1 ∪ U2 for open sets U1 and U2 with

U1 ∩ U2 = φ, U1 6= φ, or U2 6= φ.

Take points zj ∈ Uj for j = 1, 2 and consider

sup{T ∈ [0, 1] : γ(t) ∈ U1 for 0 ≤ t < T}.

Here sup, or the supremum of a set of real numbers, means the “least upper bound.”
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Problem 3 (S&S Exercise 1.5) Show that if U is an open connected subset of C,
then U is path connected. Hint(s): Fix a point z0 ∈ U . Let U1 be the collection of all
points which can be connected to z0 by a path in U . Show U1 is an open set. Show U1

is also a closed set.

Problem 4 (general connected sets) Stein defines on page 7 what it means for an
open subset of C to be connected and what it means for a closed subset of C to be
connected. Any set C is connected if the following holds

If U1 and U2 are open subsets of C and C ⊂ U1 ∪ U2, then one of the
following must hold

U1 ∩ U2 6= φ, U1 ∩ C = φ, or U2 ∩ C = φ.

(a) Show that when C is a closed connected set according to the general definition
above, then C is a closed connected set according to Stein’s definition.

(b) Show that when C is a closed connected set according to Stein’s definition, then
C is connected according to the general definition above.

(c) Give an example of a closed connected subset of C which is not path connected.

Problem 5 (S&S Exercise 1.6) Given any open set U ⊂ C and a point z0 ∈ U ,
we say an open set V is the component of U containing z0 if V is the largest
connected subset of U with z0 ∈ V .

(a) Show that the component V of an open set U containing a point z0 is the set of
all points z ∈ C that can be connected to z0 by a path in U .

(b) Show that if V1 is the component of U containing a point z1 and V2 is the com-
ponent of U containing a point z2, then either

V1 ∩ V2 = φ or V1 = V2.

Thus, the components of U partition U .

(c) Show that if U c is a compact set, then U has exactly one unbounded component.
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I’m going to attempt to standardize some notation or at least make some conve-
nient notation semi-standard for this course. Recall the identification between com-
plex numbers and points in the real Euclidean plane according to which z = x+ iy is
identified with (x, y) ∈ R2 and sets A ⊂ C and S ⊂ R2 are identified by

A = {z = x+ iy ∈ C : (x, y) ∈ S} or S = {(x, y) ∈ R
2 : z = x+ iy ∈ A}.

Going along with this identification is an identification of functions f : A → C and
mappings Φ : S → R2 with the real and imaginary parts of f giving rise to component
functions of the mapping Φ according to

f = u+ iv where

{

u : S → R by u(x, y) = Re f(x+ iy), and
v : S → R by v(x, y) = Im f(x+ iy).

We are especially interested in the differentiability properties of functions f , u, v,
and mappings Φ and their relations. This will usually be discussed with reference
to particular open subsets of C and R2 identified as above. I wish to standardize
notation for this. Namely, in addition to the identifications above, we will consider
f : Ω → C with Ω an open subset of C and generally assume the associated mapping
is Φ : U → R2 is identified with f and U = {(x, y) : z = x+ iy ∈ Ω} is open in R2.

In this context we will use the the continuity classes of real valued functions as
follows:

(a) C0(S) the collection of all continuous real valued functions on (any set) S ⊂ R2.

(b) Ck(U) the collection of all real valued functions with domain an open set U ⊂ R
2

and having partial derivatives of orders 1, 2, . . . , k in C0(U).

(c) Ck(U → R2) the collection of all mappings with component functions in Ck(U).

We may also employ minor variations of these notations which (hopefully) will be
self-explanatory when they appear.

4



Problem 6 (S&S Exercise 1.7) Given a fixed w ∈ D1(0) = {z ∈ C : |z| < 1},
consider f : D1(0) → C by

f(z) =
w − z

1− w̄z
.

(a) Show that if ζ, z ∈ D1(0), then

∣

∣

∣

∣

ζ − z

1− ζ̄z

∣

∣

∣

∣

< 1.

(b) Show that if ζ, z ∈ C with ζ̄z 6= 1 and either |ζ | = 1 or |z| = 1, then

∣

∣

∣

∣

ζ − z

1− ζ̄z

∣

∣

∣

∣

= 1.

(c) Show f : D1(0) → D1(0) is one-to-one and onto.

(d) Show f is holomorphic.

(e) Show f(w) = 0 and f(0) = w.

(f) Show f : ∂D1(0) → ∂D1(0) is one-to-one and onto.

The expression
ζ − z

1− ζ̄z

is called a Blaschke factor. The function f above given by a single Blaschke factor
is an example of a Möbius transformation. The function given by eiφf obtained by
composing a rotation with f is also a Möbius transformation.

Problem 7 (S&S Exercise 1.8, complex chain rules) Given f : Ω → W where Ω
and W are open subsets of C and g : W → C, show the following: If f and g are
(complex) differentiable, then

(a) g ◦ f : Ω → C is differentiable.

(b) (g ◦ f)′ = (g′ ◦ f)f ′.

(c)
∂(g ◦ f)

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z̄

∂f̄

∂z
. and

∂(g ◦ f)

∂z̄
=
∂g

∂z

∂f

∂z̄
+
∂g

∂z̄

∂f̄

∂z̄
.
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Problem 8 (S&S Exercise 1.9) Let f : Ω → C be a holomorphic function on an
open subset Ω in C for which the polar coordinates map Ψ : U → V by Ψ(r, θ) =
(r cos θ, r sin θ) is a diffeomorphism1 where V = {(x, y) ∈ R2 : z = x+ iy ∈ Ω}.

(a) Let ξ : U → R and η : U → R by

ξ = ξ(r, θ) = Re[f ◦ ψ−1(r, θ)] and η = η(r, θ) = Im[f ◦ ψ−1(r, θ)].

Show that the Cauchy-Riemann equations for u = Re f and v = Im f are equiv-
alent to

∂ξ

∂r
=

1

r

∂η

∂θ
and

1

r

∂ξ

∂θ
= −

∂η

∂r
.

These are called the Cauchy-Riemann equations in polar coordinates.

(b) Apply part (a) to the functions ξ : U → R and η : U → R by

ξ(r, θ) = log r and η(r, θ) = θ

to conclude that the function f : Ω → C by

f(z) = log |z|+ iArg(z)

is holomorphic. Such a function is called a branch of the complex logarithm.
(You are intended to use Stein’s Theorem 2.4 for this problem.)

(c) Compute
ef(z)

where f is a branch of the complex logarithm.

1That is a one-to-one, onto, and continuous function with a continuous inverse.
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Problem 9 (S&S Exercise 1.10) Given real valued functions u, v ∈ C2(U) where U
is an open set in R2, consider f : Ω → C by f(z) = f(x + iy) = u(x, y) + iv(x, y)
where Ω = {z = x+ iy ∈ C : (x, y) ∈ U}.

(a) Show
∂2f

∂z∂z̄
=

∂2f

∂z̄∂z
=

1

4
∆f

where ∆ : C2(Ω → C) → C0(Ω → C) by

∆f =
∂2f

∂x2
+
∂2f

∂y2

is the extension of the usual Laplace operator to complex valued functions. Note:
It is not required that f is complex differentiable here.

(b) Give an example of a function f to which part (a) applies but which is not
holomorphic.

Problem 10 (S&S Exercise 1.11) Use the previous exercise to show that if f : Ω → C

is harmonic and f = u + iv with the usual identifications so that u, v ∈ C2(U) with
U = {(x, y) ∈ R2 : z = x+ iy ∈ Ω}, then u and v satisfy

∆u = 0 and ∆v = 0.

Note: A function φ ∈ C2(Ω) where Ω is an open subset of R2 is called harmonic if
∆φ = 0. Note: We may not have yet proved that the real and imaginary parts u and
v of a holomorphic function are twice continuously differentiable, but this is true, and
we will prove it.
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