# Assignment 2: Topology and Complex Differentiability Due Tuesday February 1, 2022 

John McCuan

January 29, 2022

Problem 1 (open sets Stein pages 5-6) Remember that an open disk with center $z_{0} \in \mathbb{C}$ and radius $r>0$ is a set of the form

$$
D_{r}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\},
$$

and a set $U \subset \mathbb{C}$ is open if for every point $z \in U$ there is some $r>0$ for which the open disk $D_{r}(z) \subset U$.
(a) Show every open disk is open.
(b) Find a set $A$ in $\mathbb{C}$ which is not open and such that its complement $A^{c}=\mathbb{C} \backslash A$ is also not open. That is, $A$ is neither open nor closed.
(c) Find the diameter of

$$
\bigcup_{0<t<\pi / 2} D_{e^{t}}\left(e^{t} e^{i t}\right)
$$

Remember the diameter of a set $S$ in $\mathbb{C}$ is defined to be

$$
\operatorname{diam}(S)=\sup \left\{\left|z_{1}-z_{2}\right|: z_{1}, z_{s} \in S\right\}
$$

Hint(s)/Suggestion(s): Work in the identification with $\mathbb{R}^{2}$. Try to draw a picture of the domain using mathematical software. Parameterize the boundary of each disk for $0 \leq t \leq \pi / 2$ by

$$
\gamma(\theta)=e^{t}[(\cos t, \sin t)+(\cos \theta, \sin \theta)] .
$$

## Find an envelope curve

$$
\eta(t)=e^{t}[(\cos t, \sin t)+(\cos \phi(t), \sin \phi(t))]
$$

for $0 \leq t \leq \pi / 2$ and an appropriate function $\phi:[0, \pi / 2] \rightarrow[0, \pi / 2]$ for which $\eta^{\prime}(t)$ and $\gamma^{\prime}(t)$ are parallel for each $t$.
(d) Stein defines the closure of a set $A \subset \mathbb{C}$ to be

$$
\bar{A}=A \cup A^{*}
$$

where $A^{*}$ is the set of limit points of $A$, i.e., the points $z \in A$ for which there is a sequence $\left\{z_{n}\right\}_{n=1}^{\infty} \subset A \backslash\{z\}$ with

$$
\lim _{n \rightarrow \infty} z_{n}=z
$$

Show there is always a closed set containing any set $A$ and the closure $\bar{A}$ is also the intersection of all closed sets containing $A$ :

$$
\bar{A}=\bigcap_{U^{c} \supset A, U \text { open }} U^{c} .
$$

Problem 2 (S夭S Exercise 1.5) Given an open subset $U$ in $\mathbb{C}$, we say $U$ is connected if whenever $U_{1}$ and $U_{2}$ are open subsets of $\mathbb{C}$ with $U=U_{1} \cup U_{2}$, then one of the following must hold

$$
U_{1} \cap U_{2} \neq \phi, U_{1}=\phi, \text { or } U_{2}=\phi
$$

Given an open subset $U$ in $\mathbb{C}$, we say $U$ is path connected if whenever $z_{1}$ and $z_{2}$ are points in $U$, there exists a continuous function $\gamma:[0,1] \rightarrow U$ such that $\gamma(0)=z_{1}$ and $\gamma(1)=z_{2}$. In this case, $\gamma$ is called a path connecting $z_{1}$ to $z_{2}$ in $U$.

Show that if $U$ is path connected, then $U$ is connected. Hint(s): Assume by way of contradiction that $U=U_{1} \cup U_{2}$ for open sets $U_{1}$ and $U_{2}$ with

$$
U_{1} \cap U_{2}=\phi, U_{1} \neq \phi, \text { or } U_{2} \neq \phi
$$

Take points $z_{j} \in U_{j}$ for $j=1,2$ and consider

$$
\sup \left\{T \in[0,1]: \gamma(t) \in U_{1} \text { for } 0 \leq t<T\right\}
$$

Here sup, or the supremum of a set of real numbers, means the "least upper bound."

Problem 3 (S夭SS Exercise 1.5) Show that if $U$ is an open connected subset of $\mathbb{C}$, then $U$ is path connected. Hint(s): Fix a point $z_{0} \in U$. Let $U_{1}$ be the collection of all points which can be connected to $z_{0}$ by a path in $U$. Show $U_{1}$ is an open set. Show $U_{1}$ is also a closed set.

Problem 4 (general connected sets) Stein defines on page 7 what it means for an open subset of $\mathbb{C}$ to be connected and what it means for a closed subset of $\mathbb{C}$ to be connected. Any set $C$ is connected if the following holds

If $U_{1}$ and $U_{2}$ are open subsets of $\mathbb{C}$ and $C \subset U_{1} \cup U_{2}$, then one of the following must hold

$$
U_{1} \cap U_{2} \neq \phi, U_{1} \cap C=\phi, \text { or } U_{2} \cap C=\phi
$$

(a) Show that when $C$ is a closed connected set according to the general definition above, then $C$ is a closed connected set according to Stein's definition.
(b) Show that when $C$ is a closed connected set according to Stein's definition, then $C$ is connected according to the general definition above.
(c) Give an example of a closed connected subset of $\mathbb{C}$ which is not path connected.

Problem 5 (SЄSS Exercise 1.6) Given any open set $U \subset \mathbb{C}$ and a point $z_{0} \in U$, we say an open set $V$ is the component of $U$ containing $z_{0}$ if $V$ is the largest connected subset of $U$ with $z_{0} \in V$.
(a) Show that the component $V$ of an open set $U$ containing a point $z_{0}$ is the set of all points $z \in \mathbb{C}$ that can be connected to $z_{0}$ by a path in $U$.
(b) Show that if $V_{1}$ is the component of $U$ containing a point $z_{1}$ and $V_{2}$ is the component of $U$ containing a point $z_{2}$, then either

$$
V_{1} \cap V_{2}=\phi \quad \text { or } \quad V_{1}=V_{2}
$$

Thus, the components of $U$ partition $U$.
(c) Show that if $U^{c}$ is a compact set, then $U$ has exactly one unbounded component.

I'm going to attempt to standardize some notation or at least make some convenient notation semi-standard for this course. Recall the identification between complex numbers and points in the real Euclidean plane according to which $z=x+i y$ is identified with $(x, y) \in \mathbb{R}^{2}$ and sets $A \subset \mathbb{C}$ and $S \subset \mathbb{R}^{2}$ are identified by

$$
A=\{z=x+i y \in \mathbb{C}:(x, y) \in S\} \quad \text { or } \quad S=\left\{(x, y) \in \mathbb{R}^{2}: z=x+i y \in A\right\}
$$

Going along with this identification is an identification of functions $f: A \rightarrow \mathbb{C}$ and mappings $\Phi: S \rightarrow \mathbb{R}^{2}$ with the real and imaginary parts of $f$ giving rise to component functions of the mapping $\Phi$ according to

$$
f=u+i v \quad \text { where } \quad\left\{\begin{array}{lll}
u: S \rightarrow \mathbb{R} & \text { by } & u(x, y)=\operatorname{Re} f(x+i y) \text {, and } \\
v: S \rightarrow \mathbb{R} & \text { by } & v(x, y)=\operatorname{Im} f(x+i y) .
\end{array}\right.
$$

We are especially interested in the differentiability properties of functions $f, u, v$, and mappings $\Phi$ and their relations. This will usually be discussed with reference to particular open subsets of $\mathbb{C}$ and $\mathbb{R}^{2}$ identified as above. I wish to standardize notation for this. Namely, in addition to the identifications above, we will consider $f: \Omega \rightarrow \mathbb{C}$ with $\Omega$ an open subset of $\mathbb{C}$ and generally assume the associated mapping is $\Phi: U \rightarrow \mathbb{R}^{2}$ is identified with $f$ and $U=\{(x, y): z=x+i y \in \Omega\}$ is open in $\mathbb{R}^{2}$.

In this context we will use the the continuity classes of real valued functions as follows:
(a) $C^{0}(S)$ the collection of all continuous real valued functions on (any set) $S \subset \mathbb{R}^{2}$.
(b) $C^{k}(U)$ the collection of all real valued functions with domain an open set $U \subset \mathbb{R}^{2}$ and having partial derivatives of orders $1,2, \ldots, k$ in $C^{0}(U)$.
(c) $C^{k}\left(U \rightarrow \mathbb{R}^{2}\right)$ the collection of all mappings with component functions in $C^{k}(U)$.

We may also employ minor variations of these notations which (hopefully) will be self-explanatory when they appear.

Problem 6 (SBSS Exercise 1.7) Given a fixed $w \in D_{1}(0)=\{z \in \mathbb{C}:|z|<1\}$, consider $f: \overline{D_{1}(0)} \rightarrow \mathbb{C}$ by

$$
f(z)=\frac{w-z}{1-\bar{w} z} .
$$

(a) Show that if $\zeta, z \in D_{1}(0)$, then

$$
\left|\frac{\zeta-z}{1-\bar{\zeta} z}\right|<1 .
$$

(b) Show that if $\zeta, z \in \mathbb{C}$ with $\bar{\zeta} z \neq 1$ and either $|\zeta|=1$ or $|z|=1$, then

$$
\left|\frac{\zeta-z}{1-\bar{\zeta} z}\right|=1 .
$$

(c) Show $f: D_{1}(0) \rightarrow D_{1}(0)$ is one-to-one and onto.
(d) Show $f$ is holomorphic.
(e) Show $f(w)=0$ and $f(0)=w$.
(f) Show $f: \partial D_{1}(0) \rightarrow \partial D_{1}(0)$ is one-to-one and onto.

The expression

$$
\frac{\zeta-z}{1-\bar{\zeta} z}
$$

is called a Blaschke factor. The function $f$ above given by a single Blaschke factor is an example of a Möbius transformation. The function given by $e^{i \phi} f$ obtained by composing a rotation with $f$ is also a Möbius transformation.

Problem 7 (SGS Exercise 1.8, complex chain rules) Given $f: \Omega \rightarrow W$ where $\Omega$ and $W$ are open subsets of $\mathbb{C}$ and $g: W \rightarrow \mathbb{C}$, show the following: If $f$ and $g$ are (complex) differentiable, then
(a) $g \circ f: \Omega \rightarrow \mathbb{C}$ is differentiable.
(b) $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) f^{\prime}$.
(c)

$$
\frac{\partial(g \circ f)}{\partial z}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial z} . \quad \text { and } \quad \frac{\partial(g \circ f)}{\partial \bar{z}}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial \bar{z}}+\frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial \bar{z}} .
$$

Problem 8 (SظS Exercise 1.9) Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function on an open subset $\Omega$ in $\mathbb{C}$ for which the polar coordinates map $\Psi: U \rightarrow V$ by $\Psi(r, \theta)=$ $(r \cos \theta, r \sin \theta)$ is a diffeomorphism ${ }^{1}$ where $V=\left\{(x, y) \in \mathbb{R}^{2}: z=x+i y \in \Omega\right\}$.
(a) Let $\xi: U \rightarrow \mathbb{R}$ and $\eta: U \rightarrow \mathbb{R}$ by

$$
\xi=\xi(r, \theta)=\operatorname{Re}\left[f \circ \psi^{-1}(r, \theta)\right] \quad \text { and } \quad \eta=\eta(r, \theta)=\operatorname{Im}\left[f \circ \psi^{-1}(r, \theta)\right] .
$$

Show that the Cauchy-Riemann equations for $u=\operatorname{Re} f$ and $v=\operatorname{Im} f$ are equivalent to

$$
\frac{\partial \xi}{\partial r}=\frac{1}{r} \frac{\partial \eta}{\partial \theta} \quad \text { and } \quad \frac{1}{r} \frac{\partial \xi}{\partial \theta}=-\frac{\partial \eta}{\partial r}
$$

These are called the Cauchy-Riemann equations in polar coordinates.
(b) Apply part (a) to the functions $\xi: U \rightarrow \mathbb{R}$ and $\eta: U \rightarrow \mathbb{R}$ by

$$
\xi(r, \theta)=\log r \quad \text { and } \quad \eta(r, \theta)=\theta
$$

to conclude that the function $f: \Omega \rightarrow \mathbb{C}$ by

$$
f(z)=\log |z|+i \operatorname{Arg}(z)
$$

is holomorphic. Such a function is called a branch of the complex logarithm. (You are intended to use Stein's Theorem 2.4 for this problem.)
(c) Compute

$$
e^{f(z)}
$$

where $f$ is a branch of the complex logarithm.

[^0]Problem 9 (S夭SS Exercise 1.10) Given real valued functions $u, v \in C^{2}(U)$ where $U$ is an open set in $\mathbb{R}^{2}$, consider $f: \Omega \rightarrow \mathbb{C}$ by $f(z)=f(x+i y)=u(x, y)+i v(x, y)$ where $\Omega=\{z=x+i y \in \mathbb{C}:(x, y) \in U\}$.
(a) Show

$$
\frac{\partial^{2} f}{\partial z \partial \bar{z}}=\frac{\partial^{2} f}{\partial \bar{z} \partial z}=\frac{1}{4} \Delta f
$$

where $\Delta: C^{2}(\Omega \rightarrow \mathbb{C}) \rightarrow C^{0}(\Omega \rightarrow \mathbb{C})$ by

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

is the extension of the usual Laplace operator to complex valued functions. Note: It is not required that $f$ is complex differentiable here.
(b) Give an example of a function $f$ to which part (a) applies but which is not holomorphic.

Problem 10 (SESS Exercise 1.11) Use the previous exercise to show that if $f: \Omega \rightarrow \mathbb{C}$ is harmonic and $f=u+i v$ with the usual identifications so that $u, v \in C^{2}(U)$ with $U=\left\{(x, y) \in \mathbb{R}^{2}: z=x+i y \in \Omega\right\}$, then $u$ and $v$ satisfy

$$
\Delta u=0 \quad \text { and } \quad \Delta v=0
$$

Note: A function $\phi \in C^{2}(\Omega)$ where $\Omega$ is an open subset of $\mathbb{R}^{2}$ is called harmonic if $\Delta \phi=0$. Note: We may not have yet proved that the real and imaginary parts $u$ and $v$ of a holomorphic function are twice continuously differentiable, but this is true, and we will prove it.


[^0]:    ${ }^{1}$ That is a one-to-one, onto, and continuous function with a continuous inverse.

