Assignment 11: Complex Analysis Due Tuesday April 28, 2022

John McCuan

April 28, 2022

Problem 1 (Area Deficiency) For $r>0$ consider the sphere

$$
\partial B_{r}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{3}:|\mathbf{x}|=r\right\}
$$

parameterized (in spherical coordinates) by

$$
X(\phi, \theta)=r(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi) .
$$

More specificially, consider the spherical cap \mathcal{S} centered at $(0,0,-r)$ corresponding to $(\phi, \theta) \in[\pi-\psi, \pi] \times[0,2 \pi]$ for some ψ with $0<\psi<\pi / 2$. Notice this is the cap subtended by a cone with vertex at $\mathbf{0} \in \mathbb{R}^{3}$, vertical axis, and cone angle 2ψ.
(a) Compute the area A of \mathcal{S} as a function of r and ψ.
(b) \mathcal{S} is also the intersection of a ball $\overline{B_{a}\left(\mathbf{x}_{0}\right)}$ with center $\mathbf{x}_{0}=(0,0,-r)$ with $\partial B_{r}(\mathbf{0})$. Find the relation between the (ambient) radius a and (half) cone angle ψ.
(c) \mathcal{S} may be referred to as a geodesic disk in $\partial B_{r}(\mathbf{0})$ with center $\mathbf{x}_{0}=(0,0,-r)$.

Find the distance from \mathbf{x}_{0} to a point $\mathbf{x} \in \partial B_{a}\left(\mathbf{x}_{0}\right)$ measured within \mathcal{S} defined by

$$
\begin{aligned}
\rho & =\operatorname{dist}\left(\mathbf{x}_{0}, \mathbf{x}\right) \\
& =\min \left\{\int_{0}^{1}\left|\alpha^{\prime}(t)\right| d t: \alpha \in C^{1}([0,1] \rightarrow \mathcal{S}) \text { with } \alpha(0)=\mathbf{x}_{0}, \alpha(1)=\mathbf{x}\right\} .
\end{aligned}
$$

ρ is called the geodesic radius (or simply the radius) of \mathcal{S} as a geodesic disk.
(d) The set $\partial B_{a}\left(\mathbf{x}_{0}\right) \cap \partial B_{r}(\mathbf{0})$, which is a circle of course, is called the boundary of \mathcal{S} and is denoted by $\partial \mathcal{S}$, though one should note that the meaning of "partial" or " ∂ " in $\partial \mathcal{S}$ is somewhat different from the use of ∂ to denote the boundary of subsets of \mathbb{R}^{3}. The ∂ in $\partial \mathcal{S}$ denotes the topological boundary of \mathcal{S} as a surface, or equivalently as a metric subspace of $\partial B_{r}(\mathbf{0})$-the sphere itself being considered a metric subspace of \mathbb{R}^{3}.
(i) What is $\partial \mathcal{S}$ as a subset of \mathbb{R}^{3} ?
(ii) What is the boundary $\partial B_{r}(\mathbf{0})$ as a surface?
(iii) What is the radius of the boundary circle $\partial \mathcal{S}$?
(e) Compute the Besicovich area density

$$
\lim _{a \searrow 0} \frac{A}{\pi a^{2}} .
$$

(f) Compute

$$
\lim _{\rho \searrow 0} \frac{A}{\pi \rho^{2}} .
$$

(g) Compute the Gauss area deficiency

$$
\lim _{\rho \searrow 0} 12 \frac{\pi \rho^{2}-A}{\pi \rho^{4}} .
$$

(h) Compute the area deficiency

$$
\lim _{a \searrow 0} 12 \frac{\pi a^{2}-A}{\pi a^{4}}
$$

Do your answers to parts (g) and (h) make sense?

