Assignment 1: Complex Numbers Due Tuesday January 25, 2022

John McCuan

January 9, 2022

Problem 1 (Ahlfors 1.1.2) Let z = x + iy with $x, y \in \mathbb{R}$. Find the real and imaginary parts of the following complex numbers:

- (a) z^4 .
- (b) 1/z.
- (c) (z-1)/(z=1).
- (a) $1/z^2$.

Problem 2 (S&S Exercise 1.1) Let z_1 and z_2 be fixed complex numbers. Describe geometrically the set

$$\{z \in \mathbb{C} : |z - z_1| = |z - z_2|\}.$$

Problem 3 (S&S Exercise 1.2) If $P = (x_1, y_1) \in \mathbb{R}^2$ and $Q = (x_2, y_2) \in \mathbb{R}^2$, then define the dot product of P and Q by

$$P \cdot Q = x_1 x_2 + y_1 y_2.$$

If $z, w \in \mathbb{C}$, define the Hermitian product of z and w by

$$(z,w) = z\overline{w}$$

where \overline{w} is the complex conjugate of w, that is $\overline{w} = x_2 - iy_2$ if $w = x_2 + iy_2$. Show that if $z = x_1 + iy_1$ and $w = x_2 + iy_2$, then

$$P \cdot Q = \frac{1}{2}[(z, w) + (w, z)] = \operatorname{Re}(z, w)$$

where $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ are the points in \mathbb{R}^2 identified with z and w respectively.

Problem 4 (S&S Exercise 1.3) Solve the equation $z^n = se^{i\phi}$ where $n \in \mathbb{N}$ is a natural number, s > 0, and $\phi \in \mathbb{R}$.

Note: When Stein introduces Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

on page 4, he is simply defining notation or alternatively he is defining the value of the exponential function $f(z) = e^z$ strictly along the imaginary axis. We do not know at this point anything about the value of e^z unless $z \in \mathbb{R}$ is real or $z \in i\mathbb{R}$ is purely imaginary.

Problem 5 (Ahlfors 1.4.4) Let a, b, c be fixed complex numbers. Find conditions under which the equation

$$az + b\overline{z} + c = 0$$

for $z \in \mathbb{C}$ has exactly one solution and find a formula for that solution. Hint: Cramer's Rule.