Assignment 1: Complex Numbers Due Tuesday January 25, 2022

John McCuan

January 9, 2022

Problem 1 (Ahlfors 1.1.2) Let $z=x+i y$ with $x, y \in \mathbb{R}$. Find the real and imaginary parts of the following complex numbers:
(a) z^{4}.
(b) $1 / z$.
(c) $(z-1) /(z=1)$.
(a) $1 / z^{2}$.

Problem 2 (SESS Exercise 1.1) Let z_{1} and z_{2} be fixed complex numbers. Describe geometrically the set

$$
\left\{z \in \mathbb{C}:\left|z-z_{1}\right|=\left|z-z_{2}\right|\right\} .
$$

Problem 3 (S63S Exercise 1.2) If $P=\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ and $Q=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, then define the dot product of P and Q by

$$
P \cdot Q=x_{1} x_{2}+y_{1} y_{2} .
$$

If $z, w \in \mathbb{C}$, define the Hermitian product of z and w by

$$
(z, w)=z \bar{w}
$$

where \bar{w} is the complex conjugate of w, that is $\bar{w}=x_{2}-i y_{2}$ if $w=x_{2}+i y_{2}$. Show that if $z=x_{1}+i y_{1}$ and $w=x_{2}+i y_{2}$, then

$$
P \cdot Q=\frac{1}{2}[(z, w)+(w, z)]=\operatorname{Re}(z, w)
$$

where $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ are the points in \mathbb{R}^{2} identified with z and w respectively.

Problem 4 (SBSS Exercise 1.3) Solve the equation $z^{n}=s e^{i \phi}$ where $n \in \mathbb{N}$ is a natural number, $s>0$, and $\phi \in \mathbb{R}$.

Note: When Stein introduces Euler's formula

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

on page 4 , he is simply defining notation or alternatively he is defining the value of the exponential function $f(z)=e^{z}$ strictly along the imaginary axis. We do not know at this point anything about the value of e^{z} unless $z \in \mathbb{R}$ is real or $z \in i \mathbb{R}$ is purely imaginary.

Problem 5 (Ahlfors 1.4.4) Let a, b, c be fixed complex numbers. Find conditions under which the equation

$$
a z+b \bar{z}+c=0
$$

for $z \in \mathbb{C}$ has exactly one solutuion and find a formula for that solution. Hint: Cramer's Rule.

