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Stein and Shakarchi have a simplified version of the Abel limit theorem in the
exercises with a hint to use Stein’s exercise on partial summation. I had worked
through a somewhat more general version of Abel’s theorem as presented in Ahlfors
in my notes from 2018, but I think I can simplify that presentation a little bit. Any
way one does it, the manipulations to prove this result are a bit complicated, so I’m
going to present several different approaches and prove both the simplified and the
more general version.

1 Boundary Behavior

Recall that the general theorem on convergence of complex power series gives a disk
of convergence with absolute convergence inside the disk and divergence outside the
disk. For example, the series

∞
∑

n=1

(−1)n−1

n
zn = z − 1

2
z2 +

1

3
z3 − 1

4
z4 + · · · (1)

has Hadamard radius

R =
1

limn→∞ 1/n1/n
= 1

since

lim
n→∞

lnn1/n = lim
n→∞

lnn

n
∼ lim

n→∞

1

n
= 0.

The theorem tells us nothing, however, about the convergence of the series when |z| =
R. Furthermore, there are interesting cases where it is relatively easy to determine
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the convergence or divergence of the series when |z| = R, but we know nothing apriori
about the relation between the values at the boundary and the values in the interior.
For example when z = 1 in the series (1) we get the alternating harmonic series

∞
∑

n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

of real numbers. This series can easily seen to converge to some number between 1/2
and 1, between 7/12 and 5/6, and so on, but we might like to know what number this
is precisely. This is where the Abel limit theorem comes in. It turns out that for this
series the function represented on (interior of) the disk D1(0) is a well-known stan-
dard function with a simple formula, tabulated values, and subject to standardized
calculation with mathematical software or even a scientific calculator. In particular,
for the real number x satisfying 0 < x < 1, the value

f(x) =

∞
∑

n=1

(−1)n−1

n
xn = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · (2)

is known. In fact, f is known to be well-defined and continuous for x ∈ (−1,∞) with
well-defined (and known) value f(1). The Abel limit theorem tells us, for example
that the value of the alternating harmonic series is f(1).

Theorem 1 (Abel limit theorem version 1) If the complex power series

∞
∑

n=0

anz
n

has radius of convergence R = 1 representing a complex differentiable function f :
D1(0) → C on the open unit disk, and

∞
∑

n=0

an = w ∈ C,

then

w = lim
xր1

f(x) = lim
xր1

∞
∑

n=1

an x
n.

A proof of this theorem is assigned as an exercise in Stein and Shakarchi and is
outlined in Problem 4 of Assignment 4 for my complex analysis course Spring 2022.
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In the same Assignment one should be able to find, relatively, easily the identity of
the function defined in (2) and, consequently, the numerical value of the alternating
harmonic series. The proof of Stein and Shakarchi using the “summation by parts”
formula is a little slick I find. I’m going to offer another proof, which is also tricky and
sort of amounts to the same thing, but may conceivably also be considered somehow
more straightforward. I imagine (and hope) so.

2 Proof of Theorem 1

The basic idea is simple: The coefficients an in

∑

anx
n

can be replaced with differences of the partial sums of the series
∑

an. To be precise,

an = Sn − Sn−1 =
n
∑

j=0

aj −
n−1
∑

j=0

aj for n = 1, 2, 3, . . . (3)

where Sk given by

Sk =

k
∑

n=0

an

is the k-th partial sum of the series
∑

an as usual.
Before attempting to use this simple observation, let us verify that the series

∞
∑

n=0

anz
n

converges absolutely and thus defines a complex differentiable function

f(z) =
∞
∑

n=0

anz
n

on the open unit disk. One simple way to do this is to consider the Hadamard radius

R =
1

lim supn→∞ |an|1/n
.
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By the main theorem on the convergence of (complex) power series, we know the
formal series diverges for |z| > R. In particular, since the series is known to converge
for z1 = 1, we know 1 ≤ R, and we are done. Note that the actual disk of convergence
determined by R may be bigger than the unit disk, but the interesting applications
of the theorem are when R = 1.

Note also that one approach to verifying this convergence which does not work
in such a straightforward manner is comparison as is familiar with real series. The
series of absolute values

∞
∑

n=0

|an| |z|n

is indeed a real series with non-negative terms and |an| |z|n < |an| for |z| < 1, but we
are not assuming the series

∞
∑

n=0

|an|

converges, but only that
∞
∑

n=0

an converges.

In fact, the interesting cases (or at least many interesting cases) are when
∑

an
converges “conditionally” rather than absolutely.

With this in mind, we consider the quantity
∞
∑

n=0

anx
n −

∞
∑

n=0

an = f(x)− w (4)

which we wish to show is small when |x − 1| = 1 − x is small. This is our basic
objective.

From here on, things are a bit tricky. We argue in two steps. The first step is to
express the value in (4) in a basically different form as a different (convergent) series,
or at least involving a different series. To this end, consider a partial sum limiting to
the quantity in (4):

k
∑

n=0

anx
n − w. (5)

Notice the first coefficient is an exception not subject to (3), so we we write (5) as

a0 − w +

k
∑

n=1

anx
n = a0 − w +

k
∑

n=1

(Sn − Sn−1)x
n. (6)
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Now, we write out the summation:

a0 − w +

k
∑

n=1

anx
n = S0 − w

k
∑

n=1

xn(Sn − Sn−1) (7)

= S0 − w + x(S1 − S0)

+ x2(S2 − S1)

+ x3(S3 − S2) + · · ·+ xk(Sk − Sk−1).

Notice that we have written the sum at the end with suggestive spacing so that a,
more or less, obvious regrouping of these funitely many terms gives

a0 − w +

k
∑

n=1

anx
n = S0(1− x)− w + xS1(1− x)

+ x2S2(1− x)

+ x3S3(1− x) + · · ·+ xkSk

= S0(1− x)− w + (1− x)

k−1
∑

n=1

xnSn + xkSk

= (1− x)

k−1
∑

n=0

xnSn − w + xkSk.

This is close to what we want, but it turns out it is not quite good enough. In
particular, the last term xkSk looks like it might limit to w as k → ∞ and x ր 1,
but what we really need is to fix x and let k ր ∞, and in this case (with x < 1)
we clearly don’t get that. So, let’s go back to (7) where we wrote out the sum and
do something tricky. Notice that each difference Sn − Sn−1 can also be written as
Sn − w − (Sn − w). If we do this and then do the same regrouping, we get

a0 − w +
k
∑

n=1

anx
n = S0 − w +

k
∑

n=1

xn[Sn − w − (Sn−1 − w)]

= (1− x)(S0 − w) + x(S1 − w)(1− x) + x2(S2 − w)(1− x)

+ · · ·xk−1(Sk−1 − w)(1− x) + xk(Sk − w)

= (1− x)

k−1
∑

n=0

xn(Sn − w) + xk(Sk − w).
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This is much better. First of all the left over terms at the end can be made small
independent of N : We know Sk → w, so for any ǫ > 0 there is some N for which
k > N implies

|xk(Sk − w)| ≤ |Sk − w| < ǫ. (8)

In particular,
lim
k→∞

xk(Sk − w) = 0.

Now, taking this term to the other side we have

(1− x)

k−1
∑

n=0

xn(Sn − w) =

k
∑

n=0

akx
k − w − xk(Sk − w).

Taking the limit as k → ∞ therefore, we get that the product with the sum on the
left has a limit and

k
∑

n=0

akx
k − w = (1− x)

∞
∑

n=0

xn(Sn − w). (9)

This is what we meant be expressing the quantity in (4) in terms of a different
(convergent) series. This completes the first step.

For the second step, we use the fact that the series on the right in (9) has some
nice properties. To be precise, we can write

k
∑

n=0

akx
k − w = (1− x)

∞
∑

n=0

xn(Sn − w)

= (1− x)
N
∑

n=0

xn(Sn − w) + (1− x)
∞
∑

n=N+1

xn(Sn − w). (10)

Now we let ǫ > 0 and take N so that n > N implies

|Sn − w| < ǫ

2
.
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In particular, this means the second summation in (10) can be estimated by
∣

∣

∣

∣

∣

(1− x)

∞
∑

n=N+1

xn(Sn − w)

∣

∣

∣

∣

∣

= (1− x)

∣

∣

∣

∣

∣

∞
∑

n=N+1

xn(Sn − w)

∣

∣

∣

∣

∣

≤ ǫ

2
(1− x)

∞
∑

n=N+1

xn

≤ ǫ

2
(1− x)

∞
∑

n=0

xn

=
ǫ

2
.

Now, with N fixed so that this holds, we consider the first summation in (10):
∣

∣

∣

∣

∣

(1− x)
N
∑

n=0

xn(Sn − w)

∣

∣

∣

∣

∣

= (1− x)

∣

∣

∣

∣

∣

N
∑

n=0

xn(Sn − w)

∣

∣

∣

∣

∣

≤ (1− x)
N
∑

n=0

|Sn − w|.

Since

M =

N
∑

n=0

|Sn − w|

is just a fixed non-negative number, we can take

1− x <
ǫ

2(M + 1)

and conclude that this implies
∣

∣

∣

∣

∣

k
∑

n=0

akx
k − w

∣

∣

∣

∣

∣

<
ǫ

2
+

ǫ

2
= ǫ. �

3 Stolz Angle

4 Another Example: Leibniz Series

The complex arctangent function, or a branch of it, may be defined on the open unit
disk according to the relation

d

dz
tan−1 z =

1

1 + z2
=

1

1− (−z2)
=

∞
∑

n=0

(−1)nz2n. (11)
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To choose the branch we need to specify tan−1(0) = 0, and technically, we may start
directly with the term by term integrated series:

tan−1 z =

∞
∑

n=0

(−1)n

2n+ 1
z2n+1. (12)

Exercise 1 Define a function f : D1(0) → C by the series in (12). Use the differen-
tiation theorem for complex power series to conclude

f ′(x) =
1

1 + z2
.

Exercise 2 Given the complex function f from the previous exercise, show the real
function tan−1 : R → R with tan−1(0) = 0 satisfies

f(x) = tan−1(x) for x ∈ (−1, 1) ⊂ R.

Hint, restrict f to the real line to obtain a real valued function g of a real variable
on (−1, 1); show the real derivative g′ agrees with the complex derivative f ′ along the
interval (−1, 1).

Taking z = 1 in the formal power series given in (12) we see the series

1− 1

3
+

1

5
− 1

7
+ · · ·

which is convergent as an alternating series of real terms with the individual terms
tending to 0. The Abel limit theorem tells us that the value may be obtained as the
limit

1− 1

3
+

1

5
− 1

7
+ · · · = lim

xր1
tan−1(x) = tan−1(1) =

π

4
.

5 Boundary Point for Arcsine

I am going to attempt here to justify carefully the following formulas

d

dz
sin−1(z) =

1√
1− z2

=
∞
∑

k=0

(2k)!

(k!)2 22k
z2k, (13)

sin−1(z) =

∞
∑

k=0

(2k)!

(k!)2 22k (2k + 1)
z2k+1, (14)
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and
∞
∑

k=0

(2k)!

(k!)2 22k (2k + 1)
= 1 +

1

6
+

3

40
+

5

112
+ · · · = sin−1(1) =

π

2
. (15)

A central aspect of what we wish to establish concerning the first two formulas involves
the fact that these are formulas valid for a complex variable z. Thus, precise domains
(and codomains) in the complex plane need to be specified, and we need to be careful
about the functions we use. In particular, the identity and nature of the square root
appearing in (13) should be discussed. In fact, let us recall that the formula

d

dx
sin−1 x =

1√
1− x2

for |x| < 1

is typically obtained as follows: We know sin(sin−1 x) = x on the interval −1 ≤ x ≤ 1,
and we can differentiate (using the chain rule) in the interior of the interval to obtain

cos(sin−1 x)
d

dx
sin−1 x = 1.

Furtherfore, we have the identity cos2 θ + sin2 θ = 1. In particular, since sin−1 :
[−1, 1] → [−π/2, π/2] and cos : [−π/2, π/2] → [0, 1], we know

cos2(sin−1 x) = 1− sin2(sin−1 x) = 1− x2.

Given that cos θ ≥ 0 for −π/2 ≤ θ ≤ π/2, there is no ambiguity in taking the positive
square root and writing

cos(sin−1 x) =
√
1− x2.

Much of this is valid for the complex arcsine. In particular, starting from the series
definitions

ez =
∞
∑

n=0

1

n!
zn, cos z =

∞
∑

k=0

(−1)k

(2k)!
z2k, and sin z =

∞
∑

k=0

(−1)k

(2k + 1)!
z2k+1,

we obtain three entire holomorphic functions whose mapping properties can be de-
termined and for which various identities hold. Among these properties we find that
sin : C → C covers the complex plane exactly once on the set/strip

Σ = {x+ iy ∈ C : |x| < π/2} ∪ {π/2 + iy : y ≥ 0} ∪ {−π/2 + iy : y ≤ 0}
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with the points z = ±π/2 ∈ R mapping to branch points at w = ±1. In particular,
sin is invertible on this set defining an inverse sin−1 : C → Σ which is differentiable
on the unit disk D1(0) satisfying

sin(sin−1(w)) = w

so that

cos(sin−1(w))
d

dw
sin−1(w) = 1 (16)

just as in the real case. The restricted mapping z = sin−1 : D1(0) → C under
consideration here is illustrated in Figure 1. The relations

Figure 1: The complex sine function and arcsine function.

cos(a+ bi) = cos a cosh b− i sin a sinh b

sin(a+ bi) = sin a cosh b+ i cos a sinh b

10



for a, b ∈ R can be helpful in understanding the mapping properties of the complex
trigonometric functions like those illustrated in Figure 1. In particular, if one looks
for the inverse image of the unit disk, then one may wish to consider

{a+ bi ∈ Σ : | sin(a+ bi)| = 1}.

That is,
sin2 a cosh2 b+ cos2 a sinh2 b = cosh2 b− cos2 a = 1

or sinh2 b = cos2 a so that
b = ± sinh−1(cos a).

Let
Ω = {z ∈ C : | Im(z)| < sinh−1(cosRe(z)), −π/2 < Re(z) < π/2}

be the lens shaped image codomain of arcsine on the unit disk.
We also have the relation

cos2 z + sin2 z = 1

in the complex case so that

cos2(sin−1(w)) = 1− sin2(sin−1(w)) = 1− w2 (17)

is valid. In order to take the square root, we should consider the image of the complex
cosine on Ω. For this we may also use the identities

cos(z) = cos(−z) = sin(z + π/2) and sin(z) = − sin(−z).

For example, to determine the image of the portion

A = {z : 0 ≤ Re(z) < sinh−1(cosRe(z)), 0 ≤ Re(z) < π/2}

of Ω in the first quadrant we can write

{cos(z) : z ∈ A}
= {cos(z) : 0 ≤ Im(z) < sinh−1(cos Re(z)), 0 ≤ Re(z) < π/2}
= {cos(z) : sinh−1(cosRe(z)) < Im(z) ≤ 0, −π/2 < Re(z) < 0}
= {sin(z + π/2) : − sinh−1(cos Re(z)) < Im(z) ≤ 0, −π/2 < Re(z) < 0}
= {sin(z) : − sinh−1(π/2− cosRe(z)) < Im(z) ≤ 0, 0 < Re(z) ≤ π/2}.
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Figure 2: Using the complex sine function to find the image of a set A under the complex

cosine.

Consequently, we can see the image of the region A ⊂ Ω is in the fourth quadrant as
indicated in Figure 2. Note, first of all that our reasoning also shows that the region

−A = {−z : z ∈ A} = {z : − sinh−1(cosRe(z)) < Im(z) < 0, −π/2 < Re(z) ≤ 0}

has precisely the same image under cosine. This means, in particular, that the image
of Ω under cosine is not one-to-one. It makes sense therefore to represent this image
in some kind of Riemann surface as we have done in Figure 3 in which the image of
−A under cosine is represented in a second sheet. The same approach applies to the
conjugate regions

A = {z̄ : z ∈ A} = {z : sinh−1(cosRe(z)) < Im(z) ≤ 0, 0 ≤ Re(z) < π/2}

and −A of Ω in the second and fourth quadrants which both have image conjugate
to cos(A) as indicated in Figure 4. Note that the Riemann surface in Figure 4 has
the branch cut extending from w = 1 in the direction of the negative real axis.
In particular, in this presentation there is a smooth transition along Rew > 1 on
both sheets. The teardrop domain of interest may seem somewhat “exotic,” but it
should be emphasized that all associated quantities associated with it should seem
reasonable, if not straightforward, to calculate.
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Figure 3: The images of sets A and −A under the complex cosine in a Riemann surface.

Exercise 3 Note that the upper boundary curve of the lens region is given paramet-
rically as a graph by

γ(t) = t + i sinh−1(cos t) for − π/2 ≤ t ≤ π/2,

and consequently, the upper boundary of the teardrop region, according to the formula
for cosine, should be given parametrically by

η(t) = cos t cosh(sinh−1(cos t))+i sin t sinh(sinh−1(cos t)) = cos t cosh(sinh−1(cos t))+i cos t sin t

Write x = cos t cosh(sinh−1(cos t)) and y = cos t sin t. Eliminate t to find the up-
per boundary of the teardrop region non-parametrically as y = y(x). Determine the
rightmost boundary point of the teardrop region.

Solution: Since cosh2 z = 1 + sinh2 z, we can write the first relation as

x = cos t
√
1 + cos2 t.

Squaring both sides, we get a quartic (really biquadratic) equation for cos t:

cos4 t+ cos2 t− x2 = 0.

From this we get

cos2 t =
−1 +

√
1 + 4x2

2
and cos t =

√

−1 +
√
1 + 4x2

2
.
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Figure 4: The image of the lens shaped domain Ω under the complex cosine in a Riemann

surface.

In this case,

sin t =
√
1− cos2 t =

√

3−
√
1 + 4x2

2
.

Hence

y = cos t sin t =

√√
1 + 4x2 − (1 + x2).

The rightmost point on ∂ cos(Ω) is

η(0) = cosh(sinh−1(1)) =

√

1 + sinh2(sinh−1(1)) =
√
2.

As mentioned above, the (double covered) teardrop domain cos(Ω) may seem
somewhat exotic, but we are also now in a position to recognize it as something else
which is relatively simple. Recall that we do have the relation

cos2(sin−1(w)) = 1− w2.

This means that if we apply the quadratic function f(ζ) = ζ2 to the teardrop domain
we will get precisely the same set obtained by applying g(w) = 1−w2 to the unit disk
D1(0). This is a rather simple domain: the unit disk is invariant under w 7→ −w2 or,
more properly D1(0) maps to a double cover of itself. Thus, the image of the teardrop
domain under f(ζ) = ζ2 is (a double cover) of D1(1). To get an even better picture
of the “exotic” teardrop domain cos(Ω), start with two copies/sheets of D1(1) sewn
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Figure 5: The teardrop domain cos(Ω) is actually not so exotic.

together as a Riemann surface along the interval (0, 1) ⊂ R, and then simply apply
the principal branch of the square root; see Figure 5.

We have just established the formula

cos(sin−1(w)) =
√
1− w2 (18)

unambiguously for the complex variable w ∈ D1(0) where the square root appearing
in (18) is the (complex) principal square root. It was a lot of work, but we have
accomplished something. In particular, we can return to (16) and write

d

dw
sin−1(w) =

1√
1 + w2

for |w| < 1

as a complex formula where (hopefully) we understand everything we have written.
This is our first major objective and establishes the first equality in (13).

5.1 Formal Expansions and Formal Expansion Techniques

Unfortunately, I don’t think we have the tools in hand to rigorously verify the second
equality in (13). There are various calculations we can make to provide “circumstan-
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tial evidence” that (13) is correct, and I am planning to do that in this section. For
example, we can consider the generalized binomial expansion of

1√
1 + w2

= (1 + w2)−1/2.

Since such things may be unfamiliar, I will give some details. The binomial expan-
sion formula is usually written as

(a + b)k =
k
∑

n=0

(

k
n

)

ak−n bn

for an integer k ∈ N = {1, 2, 3, . . .} where

(

k
n

)

=
k!

(k − n)!n!
=

k(k − 1) · · · (k − n + 1)

n!

is the binomial coefficient or combination of k things taken n at a time with a
product of n terms in both the numerator and the denominator of the last expression.
This can be verified using induction. We can also write this formula as

(a+ b)k =
∞
∑

n=0

k(k − 1) · · · (k − n+ 1)

n!
ak−n bn.

Notice that I’m now letting n run from n = 0 to ∞ so this is formally a series. When
k is an integer, however all the coefficients

k(k − 1) · · · (k − n + 1)

n!

with n > k contain a factor k − k = 0 in the numerator and thus vanish. This opens
the possibility to consider the expression

∞
∑

n=0

p(p− 1) · · · (p− n+ 1)

n!
ap−n bn

where p is a non-integer power.1

1Apparently, Isaac Newton was the first person to think of doing this.
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Theorem 2 The series

∞
∑

n=0

p(p− 1) · · · (p− n+ 1)

n!
zn

converges absolutely for z ∈ D1(0) to the function f(z) = (1 + z)p for any power p.

I vaguely remember proving this in 2018, but I don’t know if the proof is in the notes.
I’m not going to prove it here. I think the basic tool to prove Newton’s theorem is
Taylor series expansion for holomorphic functions—which we definitely want to prove,
but we haven’t proved yet. In particular, for

d

dw
sin−1(w) =

1√
1− w2

= (1 + (−w2))−1/2

we can certainly calculate all the higher order derivatives at 0 and show they match
a certain power series. If we had the complex Taylor expansion theorem, then that
series would be the correct one.

Exercise 4 Compute
dn

dwn

(

1√
1− w2

)

∣

∣

w=0

for n = 1, 2, 3, . . .. What series do you get?

If the formal expansion

f(w) =

∞
∑

n=0

(−1/2)(−3/2)) · · · (−(2n− 1)/2)

n!
(−w2)n

from Newton’s theorem has coefficients matching the calculation of the derivatives,
then that will be a good sign. Let’s simplify the expression for the binomial coeffi-
cients. We start with

f(w) =
∞
∑

n=0

(−1)(−3)) · · · (−(2n− 1))

2nn!
(−1)nw2n.

There is a factor of (−1)n in the numerator of the coefficient which cancels the factor
of (−1)n from the power. Also, the product of odd numbers

1(3)(5) · · · (2n− 1) =
(2n)!

2(4)(6) · · · (2n) =
(2n)!

2nn!
.
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Making this substitution, the series takes the nice “closed” form

f(w) =
∞
∑

n=0

(2n)!

22n (n!)2
w2n. (19)

The Hadamard limit

lim sup
n→∞

(

(2n)!

22n (n!)2

)
1

2n

(20)

may not be so easy to calculate, but the value is 1 and the radius of convergence
is R = 1. Perhaps the easiest way to get this is by using the result on the ratio
test/limit from Problem 7 of Assignment 3. Notice that if we interpret the series for
f(w) as

f(w) =
∞
∑

n=0

a2n w2n with a2n =
(2n)!

22n (n!)2
, (21)

then technically every other term in the power series is zero, so the ratios |an+1|/|an|
are not so well behaved. One simple way to get around this is to write

f(w) =

∞
∑

n=0

bn (w2)n with bn =
(2n)!

22n (n!)2
.

Then we can apply the result of Problem 7 of Assignment 3 because

lim
n→∞

bn+1

bn
=

(2n+ 2)(2n+ 1)

4(n+ 1)2
= 1.

Thus, the series
∞
∑

n=0

bn ζn

converges absolutely for |ζ | < 1, and the same thing is therefore true for the series
(21) for |w| < 1. We have then that f : D1(0) → C given in (21) is holomorphic.

Exercise 5 (a) Evaluate the limit in (20) directly. Hint: Take the (real) logarithm
of the expression first.

(b) Use the ratio limit/test result of Assignment 3 Problem 7 to show the series in
Newton’s Theorem (Theorem 2) has Hadamard radius 1.
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We have a holomorphic function f : D1(0) → C given by (19) as a series

f(w) =
∞
∑

n=0

(2n)!

22n (n!)2
w2n

and we would like to assert that this function is
1√

1− w2
.

For another piece of circumstantial evidence involving a nice formal series manipula-
tion, let’s note that if our assertion is correct, then

∞
∑

n=0

(2n)!

22n (n!)2
ζn =

1√
1− ζ

,

Let us consider formally squaring the series. The nice thing about squaring a series
is that you only get finitely many terms to add up for each particular power of ζ :
(

∞
∑

n=0

anζ
n

)(

∞
∑

m=0

amζ
m

)

=
∞
∑

ℓ=0

(

∑

n+m=ℓ

anam

)

ζℓ

= a20 + (a0a1 + a1a0)ζ + (a0a2 + a21 + a2a0)ζ
2 + · · · .

And if the series on the right converges, then it clearly has the same partial sums as
the product of partial sums on the left and hence the same limit. In this case, we’re
interested in the coefficients

ℓ
∑

m=0

(2(ℓ−m))!

22(ℓ−m) ((ℓ−m)!)2
(2m)!

22m (m!)2
.

By induction on ℓ

ℓ
∑

m=0

(2(ℓ−m))!

22(ℓ−m) ((ℓ−m)!)2
(2m)!

22m (m!)2
= 1 for ℓ = 0, 1, 2, . . . .

That is,
(

∞
∑

n=0

(2n)!

22n (n!)2
ζn

)2

=
1

1− ζ
for |ζ | < 1.

Thus we are back in the position where we need to take the (principal) square root
again, but we are in trouble because it’s not obvious that the values of [f(w)]2 avoid
the branch cut along the negative real axis. Thus, we can only conclude that the
series for f(w) gives some square root of 1/(1− w2).
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5.2 Application of Abel’s Limit Theorem

Moving on to (14) we can clearly write down the expression we have obtained from
formal expansion and termwise integration:

g(z) =
∞
∑

k=0

(2k)!

(k!)2 22k (2k + 1)
z2k+1.

The radius of convergence is again R = 1, and we know that if we differentiate the
resulting holomorphic function g : D1(0) → C, we get g′ = f . We would like to
conclude

sin−1(z) =
∞
∑

k=0

(2k)!

(k!)2 22k (2k + 1)
z2k+1,

and if (13) were fully justified we would have this. As it stands, we only have circum-
stantial evidence. Nevertheless, this equality turns out to be true and Abel’s theorem
then gives (15).
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