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Preface

These notes accompany my lectures for MATH 4581 Classical Mathematical
Methods of Engineering at Georgia Tech given in the fall semester of 2024.
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Lecture 1

Spatial Ordinary Differential
Equations

1.1 Introduction/Outline

This course is primarily intended as an introduction to the three main par-
tial differential equations (PDE) of classical mathematical analysis, namely
Laplace’s equation, the heat equation, and the wave equation. This intro-
duction is given in the context of separation of variables and Fourier series
expansions. I will start with a short review of ordinary differential equations
(ODE) and then discuss Fourier series expansion in isolation. Then we will
consider various problems for the three equations above. The main text is
Applied Partial Differential Equations (fourth edition) by Richard Haberman.

I will provide some notes for the first couple lectures. After that, most of
the reading required to complete the assignments can be found in Haberman’s
book.

Assignments will be due approximately every week starting with the sec-
ond week. Here is an outline:

Part 1 Spatial Ordinary Differential Equations

Lecture 1 Introduction:

1 The Initial Value Problem

2 The two point boundary value problem

Lecture 2 More on ODE:

9
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1 Series solutions

2 Fourier series solutions

Part 2 Fourier Series

Lecture 3 Linear spaces of functions; norms

Lecture 4 Convergence of Fourier series

Lecture 5 More on Fourier series

Part 3 The Heat Equation

Lecture 6 Introduction/derivation

Lecture 7 Separation of variables

Lecture 8 More on the heat equation

Part 4 Laplace’s Equation

Lecture 9 Introduction/derivation

Lecture 10 Properties: Mean value property and maximum principle

Lecture 11 More on Laplace’s equation

Part 5 The Wave Equation

Lecture 12 Introduction:

Lecture 13



1.2. INITIAL VALUE PROBLEMS 11

1.2 Initial Value Problems

Theorem 1. (general local existence and uniqueness) If

F ∈ C1(Rn × (a, b) → Rn),

then for any p ∈ Rn and any t0 ∈ (a, b) there exists some ǫ > 0 such that
the initial value problem (IVP)

{

x′ = F(x, t) t0 − ǫ < t < t0 + ǫ
x(t0) = p

(1.1)

has a unique solution.

This is called the general existence and uniqueness theorem for
ODEs. There is no similar theorem for partial differential equations (PDE)
which is one of the main things you should learn/understand by the end of
this course. Of course, to appreciate an assertion such as this, you need to
have some appreciation for this theorem.

1.2.1 Discussion

In principle courses in calculus, ordinary differential equations (ODE), and
linear algebra are natural prerequisites for this course. If you didn’t really
learn these subjects yet, it may be difficult to get a good appreciation for
partial differential equations. I’ve learned from experience, however, that
many if not most students didn’t really become experts in all the details
of these prerequisite courses, so if you’re not so familiar with some topics
in calculus, ODE and linear algebra, don’t worry too much. Maybe you
will pick up the details along the way. I won’t really review calculus and
linear algebra explicitly, but obviously I’m planning to make some comments
concerning ODEs. This is primarily with the idea of making some kind of
comparison to PDE.

You may not have noticed (or thought too hard about) Theorem 1. Per-
haps now is a good time. Take a look back at the ingredients, and I’ll try to
go over some of them.

(a, b) is an open interval in the real number line R:

(a, b) = {x ∈ R : a < x < b}.
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The numbers a and b might be real numbers, but they might also be ex-
tended real numbers. That is,

a, b ∈ R ∪ {±∞}.

The set R ∪ {±∞} has the nice property that it is ordered, so the condtion
a < b makes sense. Addition does not always make sense in this set of
extended real numbers, however there are other sets of extended real numbers
where addition does make sense, namely

R ∪ {−∞} and R ∪ {∞}.

If we add extended real numbers, it means we are restricting attention to one
of these latter sets.

Rn is called Euclidean space:

Rn = {x = (x1, x2, . . . , xn) : xj ∈ R, j = 1, 2, . . . , n}.

Rn (including R1 which we identify with just R) is a vector space over R.
(Vector spaces are a big topic of discussion in linear algebra, and they will
be of some importance for us too.)

1.2.2 F : Rn × (a, b) → Rn

Notice that
Rn × (a, b) = {(x, t) : x ∈ Rn and t ∈ (a, b)}

may be thought of as a subset of Rn+1. In fact, Rn × (a, b) is essentially an
open set in Rn+1. When we write

F : Rn × (a, b) → Rn

we mean the open set Rn×(a, b) is the domain of a vector valued function
F of several variables. That is,

F = (f1, f2, . . . , fn)

where each fj = fj(x, t) for j = 1, 2, . . . , n is a real valued function of
several (speciically n + 1) variables. Such functions should be somewhat
familiar from multivariable calculus. In fact, the real valued function of
several variables may be said to be the basic object of study in multivariable
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calculus. Question: What is the basic object of study in ordinary differential
equations? Linear algebra?

Such a function has, or at least may have, partial derivatives. We will
of course have a lot to say about partial derivatives when we consider partial
differential equations. For now, here is a definition: Given f : U → R

where U is an open subset of Rn (for some natural number n)

∂f

∂xj
=

∂f

∂xj
(p) = lim

v→0

f(p+ vej)− f(p)

v
(1.2)

for j = 1, 2, . . . , n where

e1 = (1, 0, 0, . . . , 0) ∈ Rn

e1 = (0, 1, 0, . . . , 0) ∈ Rn

...

en = (0, . . . , 0, 0, 1) ∈ Rn.

Question: How many (first) partial derivatives does a coordinate function
fj of the vector valued function F in Theorem 1 (probably) have? (An-
swer: n+ 1.)

Given f : U → R with U an open subset of Rn,

∂f

∂xj

is called the j-th partial derivative of f or the derivative in the xj
direction if the limit in (1.2) exists.

The question of wether or not a derivative exists is an example of a
question of regularity. In a certain sense a more fundamental starting
place1 for the discussion of regularity is continuity:

Definition 1. (continuity at a point) Given an open set U ⊂ Rn and a real
valued function f : U → R we say f is continuous at p ∈ U if for any
ǫ > 0, there is some δ > 0 so that

|f(x)− f(p)| < ǫ (1.3)

whenever

|x− p| =

√

√

√

√

n
∑

j=1

(xj − pj)2 < δ. (1.4)

1than differentiability
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The quantity |x−p| appearing in (1.4) is not just simple absolute values
like the quantity on the left in (1.3). This expression is called the Euclidean
distance from x to p. The Euclidean distance is constructed using the
Euclidean norm

| · | : Rn → [0,∞) by |x| =

√

√

√

√

n
∑

j=1

x2j .

The general notions of distance and norm will be important for us later.

Definition 2. (continuity on a set) Given an open set U ⊂ Rn and a real
valued function f : U → R we say f is continuous on U if f is continuous
at each point p ∈ U . In this case we write f ∈ C0(U).

Note carefully, C0(U) denotes the collection of all continuous real valued
functions with domain U .

If f, g ∈ C0(U), then

(i) f + g ∈ C0(U) and

(ii) cf ∈ C0(U) for each c ∈ R.

These are the two main properties that make C0(U) a vector space (which
it is).

The subspace of C0(U) consisisting of functions f : U → R each of whose
partial derivatives

∂f

∂xj
, j = 1, 2, . . . , n

exist and satisfy
∂f

∂xj
∈ C0(U)

is denoted C1(U). The elements in C1(U) are called the continuously dif-
ferentiable functions.

When you see F ∈ C1(Rn × (a, b) → Rn) in the statement of Theorem 1
it means that each coordinate function fj in

F = (f1, f2, . . . , fn)

for j = 1, 2, . . . , n satisfies

fj ∈ C1(Rn × (a, b)).
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Looking back at the statement of Theorem 1 we can observe at this point
that quite a lot of information is packed into the hypothesis

F ∈ C1(Rn × (a, b) → Rn).

Quite a number of concepts are also required to understand exactly what
this hypothesis means. If it is any consolation this is the only hopothesis in
the theorem. If this one condition holds, then given any

(p, t0) ∈ Rn × (a, b)

there exists some ǫ > 0 and a unique function

x ∈ C1((t0 − ǫ, t0 + ǫ) → Rn)

satisfying the IVP (1.1).

1.2.3 application(s)

Note carefully the use of x = (x1, x2, . . . , xn) ∈ Rn as an independent variable
in the discussion of regularity above is quite different from the use of x =
(x1, x2, . . . , xn) ∈ C1((t0 − ǫ, t0 + ǫ) → Rn) as a vector valued function in
the conclusion of Theorem 1. In the latter case each coordinate xj for j =
1, 2, . . . , n is a real valued function of one real variable.
Example. Find x ∈ C1(R → R2) for which















x′ = x +

(

t
t2

)

t ∈ R

x(0) =

(

3
4

)

.

Question: If one is to apply Theorem 1 to this IVP, what is t0?
Solution:

x(t) =

(

3et + (1/2)t2

4et + (1/3)t2

)

.

Question: What is F in this example?

Example.
{

y′′ = y2

y(t0) = y0.
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From the point of view of Theorem 1 we should consider the problem as
follows: Set x1 = y and x2 = x′1 = y′. Then

{

x′1 = x2
x′2 = x21

or x′ = F(x)

where

F(x) = F

(

x1
x2

)

=

(

x2
x21

)

.

Or f1(x1, x2) = x2 and f2(x1,2 ) = x21.

1.3 Linear ODE

There is an existence and uniqueness theorem for linear ODE with a stronger
conclusion:

Theorem 2. (existence and uniqueness theorem for linear ODE) Let a, b ∈
R∪{±∞} with a < b. If aij , bj ∈ C0(a, b) for i, j = 1, 2, . . . , n, then for every
(p, t0) ∈ Rn × (a, b) the IVP

{

x′ = Ax+ b, t ∈ (a, b)
x(t0) = p,

(1.5)

where A ∈ C0((a, b) → Rn×n) is the n× n matrix malued function with the
real valued function aij in the i-th row and j-th column and b ∈ C0((a, b) →
Rn) is the vector valued function with j-th component function bj , has a
unique solution x ∈ C1((a, b) → Rn).

1.4 The two point boundary value problem

In the study of ODEs one usually focuses on the initial value problem for
ODEs. This is largely due to the sweeping assertion of Theorem 1. In
order to consider ODEs in a manner more comparable to the point of view
taken in the study of PDE we now formulate a different kind of problem.
This problem is called the two point boundary value problem (BVP): Let
a, b, x0 ∈ R be given with a < x0 < b. Given p, q, f ∈ C0[a, b] and ya, yb ∈ R,
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find y ∈ C1[a, b] satisfying






y′′ + p(x) y′ + q(x) y = f(x), x ∈ (a, b)
y(a) = ya,
y(b) = yb.

(1.6)

Here is a theorem on the existence and uniqueness of solutions for a two
point BVP for ODEs:

Theorem 3. (existence and uniqueness theorem for a BVP) Given L > 0
and g ∈ C0[0, L], the problem







u′′ = g(x), x ∈ (0, L)
u(0) = 0,
u(L) = 0.

(1.7)

has a unique solution u ∈ C1[0, L].

You can prove this theorem. It is interesting that not all two point bound-
ary value problems have nonzero solutions and some do not have unique so-
lutions: The ODE y′′ + y = 0 has general solution y = a cosx+ b sin x where
a, b ∈ R. Thus, if we require y(0) = 0 we know a = 0. Then if we require
also the second homogeneous boundary condition y(L) = 0 at some L > 0,
then either L = kπ for some k ∈ N and y = b sin x is a solution for every
b ∈ R. If on the other hand L ∈ {x > 0 : x 6= kπ, k = 1, 2, 3, . . .}, then
sin(L) 6= 0, and we must have also b = 0, so y ≡ 0 is the only solution. Of
course, it’s nice to have a unique solution in this case, but it is not a very
interesting solution.

1.5 Solving an Easy ODE

If one is interested in classical mathematical methods in engineering, then
one is interested in partial differential equations, and one of the first partial
differential equations he should consider is

∂u

∂t
=
∂2u

∂x2
+ f(x)

which is a form of the heat equation. This equation is usually accompanied
by an initial condition

u(x, 0) = u0(x)
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where u = u(x, t) is a function of two real variables, the first called a spatial
variable, the latter variable t is used to model time, and u(x, t) may be
thought of as giving the temperature at time t at position x with 0 ≤ x ≤ L
where the interval [0, L] models a thin heat conducting rod. We will discuss
the modeling and this equation in much more detail later, but a few simple
observations now may be, shall we say, motivating.

First of all, the equation also usually comes along with boundary con-
ditions which are of primary interest for the discussion to follow. One pos-
sibility is to have each end of the rod with a prescribed fixed temperature.
These are called fixed endpoint boundary conditions. For example, if
both endpoints are fixed at zero temperature, then the boundary conditions
for this partial differential equations take the form

u(0, t) = 0 = u(L, t) for t ≥ 0.

Putting all this together, we get an initial/boundary value problem of
the form



















∂u

∂t
=
∂2u

∂x2
+ f(x), 0 < x < L, t > 0

u(x, 0) = u0(x), 0 ≤ x ≤ L
u(0, t) = 0 = u(L, t), t ≥ 0.

(1.8)

The functions u0 and f as well as the positive number L are given. As
with all differential equations, the basic problem is to find the unknown
function, in this case u. This can be a challenging task, but at the moment it
might be interesting to know some special particular solutions. The number
L, as just mentioned is positive. This means the function

u(x, t) =
L2

π2
sin

(π

L
x
)

is well-defined and satisfies the boundary condition in (1.8). If we take

u0(x) = u(x, t) =
L2

π2
sin

(π

L
x
)

for 0 ≤ x ≤ L, then the initial condition in (1.8) is satisfied as well. Finally,
it will be observed that the function u is independent of t. Therefore,

∂u

∂t
≡ 0,
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and if we take (or have)

f(x) = sin
(π

L
x
)

then we have a solution to a version of (1.8) in the form


































∂u

∂t
=
∂2u

∂x2
+ sin

(π

L
x
)

, 0 < x < L, t > 0

u(x, 0) =
L2

π2
sin

(π

L
x
)

, 0 ≤ x ≤ L

u(0, t) = 0 = u(L, t), t ≥ 0.

(1.9)

A solution like this one, which is independent of t, is called an equilibrium
solution.

In order to illustrate a behavior that you might guess about solutions
of the heat equation (after thinking about it for a while) let’s consider a
modified version of (1.9):



















∂u

∂t
=
∂2u

∂x2
+ sin

(π

L
x
)

, 0 < x < L, t > 0

u(x, 0) = 0, 0 ≤ x ≤ L
u(0, t) = 0 = u(L, t), t ≥ 0.

(1.10)

If we multiply the old solution

uold(x) =
L2

π2
sin

(π

L
x
)

by a function φ = φ(t) depending on φ alone, then we get the time dependent
function

u(x, t) = φ(t) uold(x).

Notice the boundary condition in (1.10) is satisfied by this new independent
function. Also, the initial condition will be satisfied if φ(0) = 0. The partial
derivatives are reasonably easy to calculate:

∂u

∂t
=
dφ

dt
uold

and
∂2u

∂x2
= φ

d2

dx2
uold = φ

(

−π
2

L2

)

uold.
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Consequently, the PDE reduces to

dφ

dt
uold = φ

(

−π
2

L2

)

uold +
π2

L2
uold.

This of course holds at any point (x, t) for which uold(x) = 0. At points
(x, t) where uold(x) 6= 0, namely when 0 < x < L, the PDE reduces to the
condition

dφ

dt
=

(

−π
2

L2

)

φ+
π2

L2

which is an ordinary differential equation (ODE). Since this lecture is sup-
posed to be about ODEs, one might think we are making progress, and I
think we are. Unfortunately, this is not really the ODE which is supposed to
be the main star of the lecture. At any rate, I assume if you are taking this
course, you’ve seen an ODE like this one before and can (at least with a little
review) solve it. When you took a course on ODEs before, it is almost cer-
tainly the case that the emphasis was on something called the initial value
problem (IVP) and that is precisely what we have here for the function φ:

{

L2 φ′ + π2 φ = π2, t ≥ 0
φ(0) = 0.

(1.11)

Initial value problems are very natural to consider for ODEs of all sorts. I
will discuss in more detail later about why this is the case. One consequence,
however, is that all ODEs considered from this point of view are being consid-
ered as if the independent variable is some kind of (or something like) time
even if the independent variable is not time at all. Thus, the preponderance
of material in an elementary course on ODEs is about what might be called
the theory of temporal ODEs.

The ODE in this initial value problem is separable, which means we can
solve the problem as follows: Notice that for t close to 0 we know φ(t) 6= 1.
(Why?) Therefore, it makes sense to write the ODE as

1

1− φ
φ′ =

π2

L2

and integrate both sides from t = 0 to some particular positive t. The result
is

∫ t

0

1

1− φ(τ)
φ′(τ) dτ =

∫ t

0

π2

L2
dτ =

π1

L2
t.
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Assuming φ′ 6= 0, we can change variables setting w = φ(τ) so that dw =
φ′(τ) dτ and the integral on the left becomes

∫ φ

0

1

1− w
dw = − ln(1− φ). (1.12)

Thus, we find ln(1− φ) = −π2t/L2 and

φ(t) = 1− e−
π2

L2
t.

Notice that now, in retrospect, we have φ′(t) = −π2e−π
2t/L2

< 0 for all t and
0 < φ(t) < 1 for all t > 0 as well. We have also solved the intial/boundary
value problem (1.10) for the heat equation. This solution is more interesting.

There are other ways to solve the ODE for the time dependent factor
φ = φ(t). I can think of at least two other ways, and I’ve put them in the
exercises and problems below for your reviewing pleasure. What is more
important to me right now is that we have a solution

u(x, t) =

(

1− e−
π2

L2
t

)

sin
(π

L
x
)

,

and
lim
tր∞

u(x, t) = uold(x).

This kind of behavior should be typical for solutions of (1.8). Specifically,
given a solution u = u(x, t) of



















∂u

∂t
=
∂2u

∂x2
+ f(x), 0 < x < L, t > 0

u(x, 0) = u0(x), 0 ≤ x ≤ L
u(0, t) = 0 = u(L, t), t ≥ 0

(1.13)

we expect there exists some limiting temperature distribution

uold(x) = lim
tր∞

u(x, t).

The function uold is independent of time. On the other hand, uold is obtained
as the limit of solutions, so we should expect whatever properties the solu-
tions have should, as far as they can, carry over to the limiting function. In
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particular, though the initial condition doesn’t make sense for or give any
useful information about the limit, the boundary condition and the PDE
should (or at least might) apply to uold. If this is the case, it is natural to
consider the two point boundary value problem

{

u′′old = −f, 0 < x < L
uold(0) = 0 = uold(L).

(1.14)

This kind of problem is the star of today’s lecture, and this should be some-
thing that is a bit different from anything you learned about in your first
course on ODE. This is a spatial ODE.

The ODE φ′′ = −f featured in (1.14) is a very simple ODE; hence the
name of this section. The equation is a linear equation of second order, and
it’s better than linear; it is a linear second order ODE with constant
coefficients. You may recall that this class of ODEs (which are the ones
you probably learned to solve using Laplace transforms) involve second order
linear ordinary differential operators of the form

F [φ] = φ′′ + pφ′ + qφ.

The equation here is so simple that the coefficients p and q are both constant
zero. The equation is not homogeneous, but still it is very easy to solve (in
general). Here is a first solution: Integrate both sides of the equation from 0
to x to obtain

φ′ − φ′(0) = −
∫ x

0

f(ξ) dξ.

That is,

φ′(x) = φ′(0)−
∫ x

0

f(ξ) dξ. (1.15)

The function

g(x) = φ′(0)−
∫ x

0

f(ξ) dξ

appearing on the right side here is a perfectly good differentiable function.
In particular, the equation φ′ = g(x) with which we are now faced is sort of
the first order equivalent of the ODE with which we started; this is also a
very simple ODE:

φ(x) = φ(0) +

∫ x

0

g(ξ̃) dξ̃ = φ(0) + φ′(0) x−
∫ x

0

∫ ξ̃

0

f(ξ) dξ dξ̃.
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This looks a little complicated, but it is the general solution. You may
remember various sorts of ODEs from when you took an introductory course.
There were separable ODE and linear ODE. ODEs of the form φ′′ = f and
φ′ = g where you simply have a derivitive specified by a given function are
inhomogeneous linear ODE which I like to call FTC equations (after the
fundamental theorem of calculus). You probably remember the version of
the fundamental theorem of calculus which says

∫ b

a

f ′(x) dx = f(b)− f(a).

There is also a second version which says that given a function f ∈ C0(x0 −
r, x0 + r) for some real numbers x0 and r with r > 0, the function g :
(x0 − r, x0 + r) → R by

g(x) =

∫ x

x0

f(ξ) dξ

is continuously differentiable with g′(x) = f(x). This second version of the
fundamental theorem of calculus is what we are using here (to solve FTC
equations).

In any case, if we want the boundary condition φ(0) = 0 to be satisfied,
then the general solution we have found simplifies to

φ(x) = φ′(0) x−
∫ x

0

∫ ξ̃

0

f(ξ) dξ dξ̃, (1.16)

and we still have one parameter φ′(0) at our disposal. Thus, if we want to
have φ(L) = 0, then we can take

φ′(0) =
1

L

∫ L

0

∫ ξ̃

0

f(ξ) dξ dξ̃

and we have solved the two point boundary value problem (1.14):

φ(x) =
x

L

∫ L

0

∫ ξ̃

0

f(ξ) dξ dξ̃ −
∫ x

0

∫ ξ̃

0

f(ξ) dξ dξ̃. (1.17)

1.6 The Shooting Method

I’m now going to solve the simple two point boundary value problem in two
more ways. The second method of solution is called the shooting method,
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and you will see that in this case the procedure is, for all practical purposes,
not very different from what we did in the last section. The shooting method,
however, is a kind of standard method for solving two point boundary value
problems (or spatial ODEs) and it works for many more general two point
boundary value problems. So, on the one hand, it’s nice to have an oppor-
tunity to illustrate the general method in a simple case, and it’s also nice for
you to learn a new method for ODEs which you have perhaps not previously
encountered. On the other hand, there are two point boundary value prob-
lems for which the shooting method does not work for the simple reason that
there are two point boundary value problems (spatial ODEs) which do not
have any solution.

This might seem somewhat strange to you after having a first introductory
course in temporal ODEs, because the initial value problem (IVP) always has
a good solution under some minimal assumptions. Before we actually get into
the (simple) application of the shooting method, let me make an attempt to
discuss some of the underlying theoretical distinctions between the initial
value problem (temporal ODE) and the two point boundary value problem
(spatial ODE).

One theorem you should have considered a highlight of your first course
and a cornerstone of your understanding of ODE is the local existence
and uniqueness theorem. There are various versions, but the following is
a good place to start:

Theorem 4. (existence and uniqueness for temporal ODE) If a and b are
real numbers with a < b and f : R × (a, b) → R is a real valued function
which is continuously differentiable on the strip Σ = R× (a, b), then for each
t0 ∈ (a, b) and each x0 ∈ R, there exists some r > 0 so that the IVP

{

x′ = f(x, t), t0 − r < t < t0 + r
x(t0) = x0

(1.18)

has a unique solution x ∈ C1(t0 − r, t0 + r).

The set C1(t0 − r, t0 + r) consists of the continuously differentiable real
valued functions defined on the open interval (t0 − r, t0 + r). This set is a
vector space, and Problem 1.3 introduces the concepts and notation associ-
ated with continuity, differentiability, and continuous differentiability. This
is generally called regularity. The regularity requirements on the function
f in the equation x′ = f(x, t) may be called structural regularity, and the
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regularity of a solution of the equation may be distinguished as the regu-
larity of solutions.

When we say f is continuously differentiable on the strip Σ, we mean
the partial derivatives

∂f

∂x
(x0, t0) = lim

v→0

f(x0 + v, t0)− f(x0, t0)

v

and
∂f

∂t
(x0, t0) = lim

v→0

f(x0, t0 + v)− f(x0, t0)

v

exist for every (x0, t0) ∈ Σ and the functions

∂f

∂x
and

∂f

∂t

are continuous on Σ. The shorthand notation for the assumption of contin-
uous differentiability is f ∈ C1(Σ).

For the moment, note the fact that the theorem gives no control or esti-
mate on how large (or small) the positive number r may be. This is quite
important, and it is good to understand how this plays out in some examples.
Perhaps the main first example is

x′ = x2.

This is a nonlinear separable equation. It has one solution x(t) ≡ 0. This is
the unique solution satisfying x(t0) = 0 for any t0 ∈ R, and it happens to be
defined on all of R and satisfy x ∈ C∞(R).

If we consider a nonzero initial value x(t0) = x0 6= 0, then the existence
and uniqueness theorem, Theorem 4 applies to tell us there exists a unique
C1 solution defined on some interval (t0 − r, t0 + r) with r > 0. For t close
enough to t0, furthermore, this solution will satisfy x(t) 6= 0. (Why?) As a
consequence, we can find a formula for the solution as follows: We write

1

x2
x′ = 1

and integrate from t0 to t to obtain

∫ t

b0

1

x(τ)2
x′(τ) dτ = t− t0.
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Changing variables in the integral on the left using ξ = x(τ) so that dξ =
x′(τ) dτ we find

∫ x

x0

1

ξ2
dξ = −1

x
+

1

x0
= t− t0.

Thus,

x(t) =
1

(1/x0)− (t− t0)
.

Notice that this solution has a singularity (and a vertical asymptote) at
t1 = t0 + 1/x0. Though the (structural) regularity of the ODE (f(x, t) = x2

with f ∈ C∞(R2)) is quite good, solutions can only be expected to be defined
on a symmetric interval (t0− r, t0+ r) of half length r = 1/|x0|. It is difficult
to “see” the length r = 1/|x0| of the interval of existence for solutions just
by looking at the ODE

x′ = x2.

Another good example which illustrates the structural regularity require-
ment in Theorem 4 and is good to know about is

x′ =
√

|x|.

Notice that the zero solution x(t) ≡ 0 satisfies the initial value problem

{

x′ =
√

|x|, x ∈ R

x(0) = 0,

but this is not the only solution of this IVP. See Problem 1.8 below. In fact,
if we only want existence (but maybe not uniqueness) then the structural
regularity may be reduced to continuity:

Theorem 5. (Peano existence theorem) If a and b are real numbers with
a < b and f : R × (a, b) → R is a real valued function which is continuous
on the strip Σ = R× (a, b), then for each t0 ∈ (a, b) and each x0 ∈ R, there
exists some r > 0 so that the IVP

{

x′ = f(x, t), t0 − r < t < t0 + r
x(t0) = x0

(1.19)

has a solution x ∈ C1(t0 − r, t0 + r).
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The two examples x′ = x2 and x′ =
√

|x| do not contain explicit depen-
dence on the independent (time) variable t. That is, when we write down
the structure function f = f(x, t) we do not need the argument t, but can
simply use f = f(x). Such ODEs are called autonomous.

There are two or three other existence and uniqueness theorems about
which it is nice to know. In particular, our star ODE appearing the the two
point boundary value problem x′′ = f is a second order equation, and the
theorems above only apply to a first order equation. You may (or may not)
recall there was a curious way to get existence and uniqueness for ODEs of
higher order in the temporal theory of ODEs. This was to consider first
order systems.

1.7 Exercises and Problems

You should produce solutions of the problems in a form that may be submit-
ted for feedback—if you want feedback and to get a grade of “A” or “B” in
the course. When you see an exercise you will usually see/find a reference to
some numbered equation in the notes above. You should usually look back
at the text surrounding that numbered equation, review the notes, and figure
out the context of the exercise from the discussion there.

Exercise 1.1. Recall the solution of the time dependent ODE L2 φ′ = π2(1−
φ) given above using the fact that the equation is separable and leading to
(1.12).

(a) Why/how does one know there exists some δ > 0 such that φ(t) 6= −1
for 0 ≤ t < δ?

(b) Why is the lower limit of integration in (1.12) equal to zero?

(c) Why was I able to write ln(1−φ) on the right in (1.12) instead of ln |1−φ|
which is what an integral table would suggest for that integral?

Problem 1.1. Recall the initial/boundary value problem



















∂u

∂t
=
∂2u

∂x2
+ sin

(π

L
x
)

, 0 < x < L, t > 0

u(x, 0) = 0, 0 ≤ x ≤ L
u(0, t) = 0 = u(L, t), t ≥ 0
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considered in Lecture 1.

(a) Verify that the solution given above actually satisfies all the conditions
required in (1.10).

(b) Take L = 2 and use mathematical software to plot the value u(x, tj) as
a function of x for several positive times tj , j = 1, 2, 3, 4.

(c) Take L = 2 and use mathematical software to animate the evolution of
the temperature conduction in a thin rod modeled by (1.10) with the
time t aas an animation parameter.

Exercise 1.2. Recall the solution of the time dependent ODE L2 φ′ =
π2(1 − φ) is also a first order linear equation which may be solved using
an integrating factor. Solve the equation with initial value φ(0) = 0 carefully
using an integrating factor. “Carefully” means you should justify each step,
carry out the integrations with explicit limits of integration, quote theorems
when necessary, and so forth.

Problem 1.2. A linear first order ODE on an interval (0, L) has the form
F [φ] = g where g = g(x) and F : C1[0, L] → C0[0, L] is a linear operator.
Complete the following steps to give a different solution of the IVP

{

L2 φ′ = π2(1− φ), t ≥ 0
φ(0) = 0.

(1.20)

(a) When we say F is linear, we mean that for c1, c2 ∈ R and f1, f2 ∈ C1[0, L]
there holds

F [c1f1 + c2f2] = c1F [f1] + c2F [f2]. (1.21)

An expression like c1f1 + c2f2 is called a linear combination and the
condition (1.21) for L is called the linearity relation.

Rewrite the ODE in the standard linear form F [φ] = g; identify the
linear operator and verify the linearity relation.

(b) Given any linear problem/equation of the form F [φ] = g, the equation

F [φ] = 0 (1.22)

is called the associated homogeneous equation. In this context,
the original equation is sometimes called the original inhomogeneous
equation.
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Show any linear combination of solutions of a homogeneous linear equa-
tion (1.22) is a solution of the same equation.

(c) Find all solutions of the homogeneous equation associated to the lin-
ear equation you identified in part (a) above. Hint: The equation is
separable; you should find a one parameter family of solutions.

(d) Again for any linear problem/equation of the form F [φ] = g (show that)
if you can find a particular solution φ∗, i.e., an element for which
F [φ∗] = g, then every (other) solution φ of the original equation has
the form

φ = φ0 + φ∗

where φ0 is a some solution of the associated homogeneous equation.

(e) Find a particular solution φ∗ of the linear inhomogeneous equation from
part (a) by guessing a particular form for φ∗. Hint: Take φ∗ to be a
constant function.

(f) At this point, you should be able use part (d) to find a one parameter
family of solutions to the linear inhomogeneous equation from part (a).
Use the initial condition in (1.20) to determine a unique value of the
parameter giving a solution of the IVP (1.20)/(1.11).

Exercise 1.3. Take the limit as tր ∞ in each condition of the initial/boundary
value problem



















∂u

∂t
=
∂2u

∂x2
+ f(x), 0 < x < L, t > 0

u(x, 0) = u0(x), 0 ≤ x ≤ L
u(0, t) = 0 = u(L, t), t ≥ 0

(1.23)

under the assumption that

uold(x) = lim
tր∞

u(x, t) (1.24)

exists as a function in C2[0, L].

(a) Write down the conditions on convergence of the partial derivatives ap-
pearing in the PDE required to obtain an ODE for uold; what is this
ODE?
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(b) What happens when you take the limit of the initial condition?

(c) If (1.24) implies pointwise convergence, what two point boundary con-
dition do you obtain for uold?

Exercise 1.4. Find the derivative of the function g ∈ C1[0, L] with

g(x) = φ′(0)−
∫ x

0

f(ξ) dξ.

This function appears in (1.15).

Exercise 1.5. Use the fundamental theorem of calculus to check that the
function φ ∈ C2[0, L] with values given by

φ(x) =
x

L

∫ L

0

∫ ξ̃

0

f(ξ) dξ dξ̃ −
∫ x

0

∫ ξ̃

0

f(ξ) dξ dξ̃

in (1.17) solves the two point boundary value problem
{

u′′old = −f, 0 < x < L
uold(0) = 0 = uold(L)

given in (1.14) as the associated long-time equilibrium solution for the
forced heat equation in (1.13).

Problem 1.3. (continuity and continuous differentiability) For this problem,
let x denote an independent variable on an open interval

I = (a, b) = {x ∈ R : a < x < b}

where a and b are real numbers with a < b. A function f : (a, b) → R,
meaning f assigns a real number f(x) to each element x in the domain
I = (a, b), is continuous at x0 ∈ I if for each ǫ > 0, there exists some δ > 0
such that

|f(x)− f(x0)| < ǫ whenever |x− x0| < δ.

This is the definition of continuity at a point x0. The same function f
is said to be continuous on all of I = (a, b) if f is continuous at each
point x0 ∈ I. This is the definition of continuity on the open interval
I = (a, b). In this latter case, we write f ∈ C0(a, b). That is, C0(a, b) denotes
the collection of all continuous real valued functions on the interval (a, b).
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(a) If f and g are continuous on (a, b), show f +g ∈ C0(a, b). Thus, C0(a, b)
is closed under addition.

(b) If c ∈ R and f ∈ C1(a, b), then cf ∈ C0(a, b). Thus, C0(a, b) is closed
under scaling.

(c) It was mentioned that C0(a, b) is a vector space. It is important that
every vector space V contain an additive identity element, that is,
an element 0 ∈ V such that v+0 = 0+v = v for every v ∈ V . Identify
the additive identity element in C0(a, b).

(d) A function f : (a, b) → R is said to be differentiable at x0 ∈ (a, b) if

lim
v→0

f(x0 + v)− f(x0)

v

exists. This means there is some real number L (called the limit) for
which given any ǫ > 0, there exists some δ > 0 such that

∣

∣

∣

∣

f(x0 + v)− f(x0)

v
− L

∣

∣

∣

∣

< ǫ whenever |v| < δ.

When this happens, the limit L is called the derivative of f at x0 and
is denoted by

f ′(x0) (Newton’s notation) or
df

dx
(x0) (Leibniz’ notation).

If f is differentiable at every x0 ∈ (a, b), then we say f is differentiable
on the (entire)open interval I = (a, b). This is the definition of
differentiability on the open interval I = (a, b). There is no
(standard) special notation for the collection of differentiable functions
on an open interval, though this collection of functions does form a
vector space.

A function f which is differentiable on (a, b) determines a second func-
tion f ′ : (a, b) → R, called the derivative of f on (a, b). If f ′ ∈
C0(a, b), then f is said to be continuously differentiable on the in-
terval (a, b), and we write f ∈ C1(a, b). That is C1(a, b) is the collection
of all continuously differentiable functions on the interval (a, b).

Show a function which is differentiable at x0 ∈ (a, b) is continuous at
x0. Conclude that C1(a, b) ⊂ C0(a, b).
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Problem 1.4. Find a function f ∈ C0(0, 1)\C1(0, 1).

Problem 1.5. Draw the strip Σ = R × (a, b) and illustrate the existence
and uniqueness assertion of Theorem 4. Hint(s): Your picture should have
some appropriate interval labeled with endpoints a and b and some length(s)
labeled 2r (or r).

Problem 1.6. Carefully use the existence and uniqueness theorem for ODEs
to show the zero solution is the unique solution of the initial value problem

{

x′ = x2, t ∈ R

x(0) = 0.

Be careful, it is not enough to apply the theorem at t0 = 0. Why?

Problem 1.7. Consider the ODE x′ = x2 in the standard form x′ = f(x, t).

(a) Identify the function f determining the structure of this ODE.

(b) Determine the largest natural domain Σ on which f is defined.

(c) Determine the greatest degree of regularity of f on the natural domain
you found in part (b), for example, find the largest k for which f ∈
Ck(Σ).

Problem 1.8. Consider the IVP
{

x′ =
√

|x|, x ∈ R

x(0) = 0.

(a) Find a solution x ∈ C1(R) with x(1) > 0.

(b) Explain why this situation may be expected in view of Theorems 4 and
5.



Lecture 2

Spatial Ordinary Differential
Equations (continued)

2.1 Series Solutions

Consider the initial value problem







y′′ + y = 0, x ∈ R

y(0) = y0,
y′(0) = y′0.

(2.1)

You can solve this problem in various ways. Here is a way you may not
have seen:

Assume

y(x) =

∞
∑

j=0

ajx
j

is given as a power series with center of expansion x0 = 0 with (unknown)
coefficients a0, a1, a2, a3, . . .. Then y(0) = a0,

y′(x) =
∞
∑

j=1

jajx
j−1,

and y′(0) = a1. Therefore, we must have a0 = y0 and a1 = y′0. Differentiating

33
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the series expression again we can write

y′′(x) =
∞
∑

j=2

j(j − 1)ajx
j−2

=

∞
∑

j=0

(j + 2)(j + 1)aj+2x
j

where it may be noticed that we shifted the indices by two to obtain the last
expression. Substituting the series expressions in the ODE we find

∞
∑

j=0

[(j + 2)(j + 1)aj+2 + aj] x
j = 0.

In order for the left side to be the power series expansion of the zero function,
all the coefficients in this series must vanish. That is, we must have

aj+2 = − 1

(j + 2)(j + 1)
aj for j = 0, 1, 2, 3, ldots.

It follows inductively that every coeffient with an even index is a multiple of
a0, and every coefficient with an odd index is a multiple of a1. In fact, it is
not too difficult to see that

a2k =
(−1)k

(2k)!
a0 and a2k+1 =

(−1)k

(2k + 1)!
a1 k = 0, 1, 2, 3, . . . .

Rearranging the terms in the original assumed power series expansion we see

y = a0

∞
∑

k=0

(−1)k

(2k)!
x2k + a1

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1

= a0 y0(x) + a1y1(x)

where {y0, y1} ⊂ Cω(R) is a basis of solutions for the solution set

Σ = {y ∈ Cω(R) : y′′ + y = 0}.

In particular the solution space Σ is a two-dimensional vector space over R.
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2.2 Fourier series solutions

Recall that for our comparison to PDE we considered a two point boundary
value problem for a relatively simple linear second order ODE. One such
equation is y′′ = f(x). Given L > 0, I will now describe another approach to
using a series to solve an IVP







y′′ + y = f, x ∈ (0, L)
y(0) = 0,
y(L) = 0.

(2.2)

Here we assume the solution y, instead of a power series expansion, has a
series expansion of the form

y =
∞
∑

j=1

aj sin

(

jπ

L
x

)

. (2.3)

As with the power series approach, the objective is to determine the coef-
ficients a1, a2, a3, . . .. This may seem like something of an improbably ap-
proach, but it might be more plausible if it is possible to write the inhomo-
geneiety f as such a series as well:

f(x) =
∞
∑

j=1

bj sin

(

jπ

L
x

)

. (2.4)

In principle if f ∈ C0[0, L] we can only imagine this happens for functions
f which are “compatible” in the sense that f(0) = f(L) = 0. Still there are
some functions like that, and as we will see later even if f does not satisfy
the homogeneous boundary conditions from the BVP, it can still make sense
to consider such a series (which is a little bit amazing). Series like the ones
in (2.3) and (2.4) are called Fourier sine series.

If we differentiate, more or less as we did with the power series, we find

y′ =

∞
∑

j=1

aj

(

jπ

L

)

cos

(

jπ

L
x

)

and

y′′ = −
∞
∑

j=1

aj

(

jπ

L

)2

sin

(

jπ

L
x

)

.
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None of the terms disappear in this case and no shifting of indices is necessary.
Substituting in the ODE y′′ + y = f we get

∞
∑

j=1

aj

[

−
(

jπ

L

)2

+ 1

]

sin

(

jπ

L
x

)

=
∞
∑

j=1

bj sin

(

jπ

L
x

)

.

Equating the coefficients yeilds the interesting relation

aj =
1

−
(

jπ
L

)2
+ 1

bj for j = 1, 2, 3, . . . ..

You may notice that this formula is going to be problematic if L = jπ. So in
this case, we want to consider intervals (0, L) with L 6= jπ for j = 1, 2, 3, . . ..
Again, there are certainly some interval lengths L for which this condition
holds. If

L /∈ {jπ : j = 1, 2, 3, . . .}
we say L is not in the spectrum of the operator Ly = y′′ + y.

In summary, we are left with a series which looks like it very well might
represent some kind of solution of the BVP:

y =

∞
∑

j=1

1

−
(

jπ
L

)2
+ 1

bj sin

(

jπ

L
x

)

. (2.5)

We are also left with a number of questions about this kind of approach:

1. Which functions f are reasonably represented by Fourier series as in
(2.4)?

2. What kind of representation does a Fourier (sine) series really give?

3. Assuming everything goes well and all the various assumptions are
satisfied, does the series for the solution given in (2.5) “converge” in
some sense?

In a certain sense the last question promises to have a “nice” answer. Gen-
erally, as with power series, convergence will work better when and if the
coefficients are smaller, and notice that for j large the numbers

aj =
1

−
(

jπ
L

)2
+ 1

bj

are certainly at least as small as the coefficients bj. Thus, one expects that
if the inhomogeneity f has a reasonable Fourier sine series expansion, then
the solution should as well.
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Fourier Series
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Lecture 3

Linear spaces of functions;
norms

3.1 Ck spaces

We have discussed the linear spaces C0(a, b) consisting of the continuous
real valued functions with domain an open interval (a, b) ⊂ R with a, b ∈
R ∪ {±∞} with a < b and C1(a, b) consisting of functions in C0(a, b) with
(at least) one derivative in C0(a, b). These are called the space of continu-
ous functions and the space of continuously differentiable functions
respectively. These two spaces provide prototypes for the spaces C0(U) of
continuous functions u : U → R where U is an open subset of Rn for n ≥ 1
and continuously differentiable functions in C0(U) with continuous first order
partial derivatives. The latter space is denoted by C1(U).

There can be some complications defining C0(A) and C1(A) consisting of
functions with domain A ⊂ Rn (for some n ∈ N = {1, 2, 3, . . .}) when A is
not an open set. The situation with C0(A) is relatively easy to handle, but
there are in fact different choices for the definition of C1(A) especially when
the dimension n is greater than n = 1. Ignoring these difficulties for the
moment the C0 (continuity) spaces and the C1 (continuous differentiability)
spaces can be used as a foundation for defining a natural heirarchy of greater
degrees of differentiability. Roughly speaking one may proceed inductively
to define

Ck(A) = {u ∈ Ck−1(A) : Dβu ∈ C1(A) for |β| = k − 1} (3.1)

39
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so that for example

C2(A) =

{

u ∈ C1(A) :
∂u

∂xj
∈ C1(A), j = 1, 2, . . . , n

}

,

and one usually wishes to have C1(A) ⊃ C1(A) ⊃ C2(A) ⊃ · · · . Thus, one
can define

C∞(A) =

∞
⋂

k=0

Ck(A)

the linear space of infinitely differentiable functions.

3.1.1 multiindices

The notation for higher order partial derivatives used in (3.1) may be unfa-
miliar. In the notation Dβu, the symbol β represents a multiindex, that is,
an element of Nn

0 where N0 = {0, 1, 2, 3, . . .} is the natural numbers with zero.
That is β = (β1, β2, . . . , βn) where each βj is a nonnegative integer. There
are, first of all, various convenient quantities associated with a multiindex β:

norm |β| = β1 + β2 + · · ·+ βn.

power xβ = xβ11 x
β2
2 · · ·xβnn for x = (x1, x2, . . . , xn) ∈ Rn.

factorial β! = β1! β2! · · · βn!.

Each of these is a generalization of familiar quantities from arithmetic. Notice
the norm, however, is not the Euclidean norm, but rather the sum of the
entries. You can determine for yourself if this quantity deserves to be called
a norm.

The notation Dβu is a very efficient way to express the partial derivative
given in classical notation by

Dβu =
∂|β|u

∂xβ11 ∂x
β2
2 · · ·∂xβnn

.

3.1.2 power series

Given f ∈ C∞(a, b) and x0 ∈ (a, b) one has derviatives

f (j)(x0) =
djf

dxj
for j = 0, 1, 2, 3, . . . .
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Furthermore the Taylor coefficients are given by

f (j)(x0)

j!

in terms of these derivatives, and one has a Taylor series expansion

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j (3.2)

with center of expansion x0. Hopefully, all this is familiar, or at least you
have seen it before. Some interesting facts of which you may or may not be
aware are the following:

(i) It is not always true that

f(x) =

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j (3.3)

for a given x ∈ (a, b). In fact, it is not always true that the series for
a given x ∈ (a, b) always represents any specific real number in any
reasonable sense.

(ii) It is always true that

f(x0) =

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j for x = x0.

Question: Do you see why?

(iii) It is always true that

f(x) =
k

∑

j=0

f (j)(x0)

j!
(x− x0)

j +
f (k+1)(x∗)

(k + 1)!
(x− x0)

k+1

for k = 0, 1, 2, 3, . . . and some x∗ between x and x0. This is called the
Taylor approximation theorem.
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Basically, the reason the approximation of (iii) does not imply the equality
in (3.3) is because sometimes the Taylor remainder/error term

∣

∣

∣

∣

∣

f(x)−
k

∑

j=0

f (j)(x0)

j!
(x− x0)

j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

f (k+1)(x∗)

(k + 1)!
(x− x0)

k+1

∣

∣

∣

∣

does not tend to zero when k tends to ∞.
The linear space Cω(a, b) is defined as follows:

Cω(a, b) = {f ∈ C∞(a, b) : for each x0 ∈ (a, b)

there is some ǫ > 0 such that

the equality (3.3) holds for

all x with x0 − ǫ < x < x0 + ǫ)} .
A function in Cω(a, b) is locally represented by a power series and is said to
be real analytic. Thus, we may extend our inclusion relations:

C0(a, b) ⊃ C1(a, b) ⊃ Ck(a, b) ⊃ C∞(a, b) ⊃ Cω(a, b), k = 2, 3, 4, . . . .

Most “nice” functions you know are in Cω(a, b).
This is a convenient time to mention power series expansion in several

variables and the related function space Cω(U). You may not have seen
this topic before and it is not a main tool in this course, but sometimes the
multivariable version of Taylor’s approximation theorem can be just as useful
as the one variable version. Also, we happen to have the appropriate notion
at our disposal.

Given u ∈ C∞(U), the Taylor coefficents of u at p are given by

Dβu(p)

β!
,

and the Taylor series for u with center of expansion p is

∞
∑

|β|=0

Dβu(p)

β!
(x− p)β.

If Br(p) ⊂ U it always holds that

∣

∣

∣

∣

∣

∣

u(x)−
k

∑

|β|=0

Dβu(p)

β!
(x− p)β

∣

∣

∣

∣

∣

∣

≤ C

∑

|β|=k+1

max
ξ∈Br(p)

|Dβu(ξ)|

β!
|(x− p)β|
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for x ∈ Br(p). If for each p ∈ U there exists some r > 0 for which Br(p) ⊂ U
and

u(bx) =
∞
∑

|β|=0

Dβu(p)

β!
(x− p)β for x ∈ Br(p)

in the sense that

lim
k→∞

∣

∣

∣

∣

∣

∣

u(x)−
k

∑

|β|=0

Dβu(p)

β!
(x− p)β

∣

∣

∣

∣

∣

∣

= 0,

then we say u is real analytic and write u ∈ Cω(U).

3.1.3 The spaces Ck(U) and Lp(U)

As mentioned above, it is a somewhat delicate matter to define a linear
space Ck(A) when A is not an open set. In fact such a linear space may have
different definitions in different contexts. Without getting into the details
we will consider at least to some extent one special case of this somewhat
delicate situation. This is the situation when the domain A ⊂ Rn of the
functions u : A → R under consideration is the closure of an open subset
of Rn. Thus we wish to consider for example Ck(U) where U ⊂ Rn is an
open set. The main advantage Ck(U) has over Ck(U) is that Ck(U) can be
equipped with a norm by means of which the distance from one function to
another can be measured and the notion of convergence of functions can be
properly considered.

Definition 3. (norm) If X is a real linear space a norm on X is a function
‖ · ‖ : X → [0,∞) satisfying the following properties

N1 ‖v‖ = 0 if and only if v = 0 is the zero vector in X .

N2 ‖cv‖ = |c| ‖v‖ for every c ∈ R and v ∈ X .

N3 ‖v + w‖ ≤ ‖v‖+ ‖w‖ whenever v, w ∈ X .

A linear space equipped with a norm is called a normed linear space or a
vector space.1

1You may have thought of a “vector space” as simply what we are referring to as a
“linear space,” i.e., a set with operations of addition and scalar multiplication satisfying
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Property N1 is said to express that the norm is positive definite and
property N2 that the norm is nonnegative homogeneous. Property N3
is called the triangle inequality for a norm.

The norm on C0(U) is called the C0 norm (read “C-zero norm”) and is
given by

‖u‖C0 = max
x∈U

|u(x)|. (3.4)

You can see from this definition why there is no norm (or at least no simple
natural norm) on C0(U) where U ⊂ Rn is open.

Question: Can you see from (3.4) why there is no norm on C0(U)?

The simplest kind of convergence in C0(U) or C0(U) is pointwise con-
vergence. One says a sequence of functions

{uj}∞j=1 ⊂ C0(U)

converges to a function u ∈ C0(U) if for each p ∈ U

lim
j→∞

uj(p) = u(p).

That is, given a fixed point p ∈ U and some ǫ > 0, there exists some N > 0
so that

j > N implies |uj(p)− u(p)| < ǫ. (3.5)

The condition (3.5) is often expressed in symbols as

j > N =⇒ |uj(p)− u(p)| < ǫ.

Pointwise convergence seems like a natural notion of convergence, but
this kind of convergence allows some complicated situations which are often
difficult to deal with mathematically. In particular, it is not easy to express

certain algebraic properties. This is the usual terminology in elementary linear algebra
courses. In such courses the main space under consideration is the Euclidean space Rn,
and Rn is almost invariably considered with the Euclidean norm. On the other hand, I
may offer a caution that the terminology I am using is not universal by any means. In
fact, I discovered at least one author who uses exactly the opposite terminology referring
to a set in which elements can be added and scaled by real numbers as a “vector space”
and reserving the term “linear space” to denote such a set equipped with a a norm.
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pointwise convergence in terms of any kind of reasonable distance between
functions.

In contrast, we say a sequence {uj}∞j=1 ⊂ C0(U) converges uniformly
to u ∈ C0(U) if given ǫ > 0 there is some N for which

j > N implies |uj(x)− u(x)| < ǫ for every x ∈ U .

This may seem like a condition that is not very different from pointwise
convergence, but it really is very different. Furthermore, if we carry over the
same definition to C0(U) where we have a norm, then this condition becomes

j > N =⇒ ‖uj − u‖C0 < ǫ, (3.6)

and we say
lim
j→∞

uj = u with respect to the C0 norm. (3.7)

It turns out to be really nice that a condition like (3.6) can always be in-
terpreted as a natural limiting condition involving the distance between two
functions whenever the functions are in a normed space. The norm may
change giving a different kind of convergence, but once you have the norm,
then you can say very precisely and conveniently what you mean by that
particular kind of convergence.

There is a nice norm on each Ck space for k = 1, 2, 3, . . .. The C1 norm
on C1(U) is often expressed in terms of the C1 seminorm

[ · ]C1 : C1(U) → [0,∞) by [u]C1 = max
|β|=1,x∈U

|Dβu(x)| = max
|β|=1

‖Dβu‖C0.

Question: Can you see why the C1 seminorm is not a norm? If you can, then
you can guess the definition of the mathematical object called a seminorm
of which the C1 seminorm is an example.

The C1 norm is given by

‖u‖C1 = ‖u‖C0
+ [u]C1.

It turns out that there is another C1 norm that is in common use. This
“other” C1 norm is defined by

‖u‖C1 =
∑

|β|≤1

max
x∈U

|Dβu(x)| = ‖u‖C0 +
∑

|β|=1

‖Dβu‖C0.

It turns out that in most instances one doesn’t need to worry too much about
which norm is being used because these two norms are equivalent.
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Definition 4. (equivalent norms) Given two norms ‖ · ‖1 : X → [0,∞) and
‖ · ‖2 : X → [0,∞) on the same linear space X , we say ‖ · ‖1 and ‖ · ‖2
are equivalent norms if there exist positive constants m and M such that

m‖v‖1 ≤ ‖v‖2 ≤M‖v‖1 for every v ∈ X .

You may have noticed there are actually two different definitions for a
seminorm on C1(U) here. I guess one could define what it means to have
equivalent seminorms, but I don’t remember ever seeing that.

Similarly, there are equivalent norms on Ck(U) given by

‖u‖Ck = max
|β|≤k

‖Dβu‖C0

or
‖u‖Ck =

∑

|β|≤k

‖Dβu‖C0.

The Ck spaces for k ∈ N0 ∪ {∞} are well-suited for many purposes. For
example, C∞(a, b) is a convenient domain on which to consider an ordinary
differential operator N : C∞(a, b) → C∞(a, b). On the other hand, it is
often natural to consider an n-th order ordinary differential operator on the
larger space Cn(a, b). In this case, there is a minor complication: One cannot
expect the operator to have the same domain and co-domain, so that in this
case the natural operator has

N : Cn(a, b) → C0(a, b).

There are from some perspective a number of shortcomings of the Ck

spaces. Three of these are the following:

1. These spaces are not the appropriate spaces on/in which to consider
Fourier series.

2. These spaces do not contain many functions of interest to engineers for
applications.

3. Ck(U) is not a normed space for U and open subset of Rn

As examples of the second shortcoming observe that the absolute value
function f : R → [0,∞) by

f(x) =

{

−x, x ≤ 0
x, x ≥ 0
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satisfies f ∈ C0(R)\Ck(R) for k = 1, 2, 3, . . .. Also, the Heaviside function
h : R → {0, 1} by

f(x) =

{

0, x < 0
1, x ≥ 0

and the standard unit pulse σ : R → {0, 1} by

σ(x) = h(x)− h(x− 1)

are not in any Ck space over an interval containing x = 0.
More generally it can be said that power series are most compatible with

or heavily dependent on differentiability whicle functions of interest in ap-
plications are often better considered in terms of Fourier series which are
fundamentally compatible with integration.
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Lecture 4

Fourier Series

In Chapter 3 of his book Applied Partial Differential Equations with Fourier

Series and Boundary Value Problems Richard Haberman asks several ques-
tions about series of the form

a0 +

∞
∑

j=1

aj cos

(

jπ

L
x

)

+

∞
∑

j=1

bj sin

(

jπ

L
x

)

where L > 0 is given. Perhaps a main question is the following: Given a func-
tion f : [−L, L] → R is there a choice of coefficients a0, a1, a2, . . . , b1, b2, b3, . . .
such that (in some rigorous sense)

f(x) = a0 +

∞
∑

j=1

aj cos

(

jπ

L
x

)

+

∞
∑

j=1

bj sin

(

jπ

L
x

)

? (4.1)

As we have seen the function f may be taken to be in many different function
spaces, and the answer to the main question above may be expected to
depend on that kind of property of the function f . For example, if f ∈
C0[−L, L], then a very natural way for the equality in (4.1) to make sense is
in the C0 norm, that is (4.1) can take on the rigorous meaning that the limit
of partial sums

fn = a0 +

n
∑

j=1

aj cos

(

jπ

L
x

)

+

n
∑

j=1

bj sin

(

jπ

L
x

)

satisfying1 {fn}∞n=1 ⊂ C∞[−L, L] also satisfies

lim
n→∞

‖fn − f‖C0 = 0, (4.2)

1In fact fn ∈ C∞(R).

49
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which we know is equivalent to uniform convergence. We have pointed out
that one may very well wish to consider other functions which are not contin-
uous like the Heaviside function or pulse functions. For these more general
functions we could consider the question of simple pointwise convergence,
and we will to a certain extent. It is much less complicated and rather more
convenient in most instances, however, to consider notions of convergence
which can be considered in a manner analogous to (4.2) but possibly with
respect to some different norm or distance in a function space (see below).

In a certain sense the main question may be “unpacked” along the fol-
lowing lines:

1. What conditions must f satisfy for (4.1)?

2. In what sense can (4.1) be expected to hold, i.e., in what norm to the
partial sums converge to f? Note that this is really preliminary to
question 1.

3. Given f how should the coefficients a0, a1, a2, . . . , b1, b2, b3, . . . be cho-
sen? Is there only one way? Note that this is really preliminary to
question 2.

So we should perhaps start with question 3.
Haberman also points out that the answers to these (kinds of) questions

are generally complicated. We have at least set the rough context of function
spaces and norms in which the main answer can be given. Let us pause for
a moment and describe one additional structure which may be helpful in
setting the context and, at any rate, is a structure with which it can be
useful to be familiar.

Definition 5. (abstract distance) Given any set X , a function d : X ×X →
[0,∞) satisfying

M1 d(x, y) ≥ 0 with equality if and only if x = y.

M2 d(x, y) = d(y, x) for any x, y ∈ X .

M3 d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X .

The function d is variously called a distance function, a metric distance,
or simply a metric. A set X equipped with a distance function is sometimes
called a distance space but much more often a metric space. Property M1
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is said to express that the metric is positive definite. Property M2 is
symmetry of the distance function, and property M3 is called the trinagle
inequality for metric distance.

Theorem 6. Every normed space is a metric space with d(x, y) = ‖x− y‖.

You can prove this result; this particular distance function given by
d(x, y) = ‖x − y‖ is called the metric distance induced by the norm or
the norm induced distance.

4.0.1 Fourier coefficients

Given a function f ∈ L
1(−L, L), which means

∫ L

−L

|f(x)| dx =

∫

(−L,L)

|f | (4.3)

makes sense and is finite, it is always possible to find a formula for the Fourier
coefficients a0, a1, a2, . . . , b1, b2, b3, . . . in (4.1). We need to be a little careful
with this statement. What is intended is that there exist unique numbers for
which some version of (4.1) might hold. That may seem a little strange,
but hopefully the significance of this strange statement will become clear(er)
as we proceed further to answer the main question.

What should be clear (if you think about it a bit) is that we have defi-
nitely defined a function space L1(−L, L) called the first Lebesgue space, the
“Lebesgue integrable functions,” or just simply “ell-one.” The expressions
on each side of (4.3) are really just different notations for the integral of
the absolute value of the function f . There are already a few technicalities
I’m sweeping under the rug here, but let me give some superficial pseudo-
explanation of the important underlying mathematical reality I’m glossing
over. The notation on the left of (4.3) should look familiar. This is the
usual notation for the integration introduced by Isaac Newton and Wilhelm
Leibniz, and this notation is still used in calculus courses today where that
integration is discussed and used. All the good theorems in those courses
require the functions to which they apply to be in the nice Ck spaces we’ve
discussed a little bit above. You may not have noticed this, but it’s true.
Here are five examples:

Theorem 7. (intermediate value theorem) If f ∈ C0[a, b] with f(a) 6= f(b),
then for each c between f(a) and f(b) there is some x∗ ∈ (a, b) with f(x∗) = c.
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The conclusion of this result does not hold for the Heaviside function h
on [−1, 1] essentially because h /∈ C0[−1, 1].

Theorem 8. (mean value theorem) If f ∈ C0[a, b] ∩ C1(a, b), then there
exists some x∗ ∈ (a, b) with

f ′(x∗) =
f(b)− f(a)

b− a
.

Theorem 9. (fundamental theorems of calculus)

1. If f ∈ C1[a, b], then

∫ b

a

f ′(x) dx = f(b)− f(a).

2. If f ∈ C0[a, b], then F : [a, b] → R by

F (x) =

∫ x

a

f(ξ) dξ

satisfies F ∈ C1[a, b] and

F ′(x) = f(x) for x ∈ [a, b].

Theorem 10. (Green’s theorem) If v = (v1, v2) ∈ C1(U → R2) where U is
a bounded open subset of R2 with ∂U a simple closed (piecewise) C1 curve
with counterclockwise tangent vector field T , then

∫

U

(

∂v2
∂x

− ∂v1
∂y

)

=

∫

∂U

v · T.

Theorem 11. (Taylor’s theorem) If u ∈ Ck+1(U) and p ∈ U , then there is
some r > 0 such that for each x ∈ Br(p) there exists some points xβ ∈ Br(p)
for |β| = k + 1 such that

u(x) =
∑

|β|≤k

Dβu(p)

β!
(x− p)β +

∑

|β|=k+1

Dβu(xβ)

β!
(x− p)β .
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You may not have seen these theorems in exactly these forms, and you
may not have seen some of them at all, but they do illustrate how the natural
setting for the main theorems in calculus is the Ck spaces. In fact, the integral
used in calculus is what is traditionally called the Riemann integral2 and
the main theorem on the existence of the Riemann integral is that such an
integral is well-defined for functions that are continuous on a closed interval,
i.e., functions in C0[a, b]. This fundamental fact of existence is especially
evident in the statement of the fundamental theorem of calculus.

On the other hand, even Newton and Leibniz were well aware that it
made good sense to integrate some functions that are not continuous. For
example there is no problem integrating the Heaviside function. Also with
some special cases called “improper integrals” it is pretty easy to make good
sense of quantities like

∫ 1

0

1√
x
dx or

∫ ∞

1

1

x2
dx.

In short, the Riemann integral makes fine sense for some discontinuous func-
tions. However, there was no good existence theorem for Riemann integra-
tion applying to any reasonable large class of discontinuous functions. It
was also known by the time the existence theorem for Riemann integrals of
continuous functions was carefully verified that there are some functions like
χR\Q : [0, 1] → R by

χR\Q(x) =

{

0, if x is a rational number
1, if x is not a rational number

that were definitely not Riemann integrable. It was far from clear however
where to draw the line between functions for which some kind of integration
made sense and those for which no kind of integration made sense. Actually,
the latter notion, that there can be functions which are so badly behaved
that no notion of integration makes sense, was not really something most
people expected to be the case. Basically, the overall situation was sorted
out by Lebesgue who defined a notion of integration, now known as Lebesgue
integration, and defined a function space of those functions for which inte-
gration makes sense. This is the Lebesgue space mentioned above and the

2The notation for the integral on the left in (4.3) is associated with the Riemann
integral, and that is why this expression is familiar from calculus.
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notation for integrals of this more general sort is on the right in (4.3). The
function χR\Q is in L

1(0, 1) and
∫

(0,1)

χR\Q = 1.

In fact, using the new notation one can refer to the integral over a very large
class of sets A (though not quite all sets) and the functions f in L

1(A) by
writing

∫

A

f.

Thus,
∫

[0,1]

χR\Q

makes perfectly good sense too, though one of the consequences of Lebesgue’s
identification of the sets upon which one can integrate and the functions
one can integrate on those sets is that single points generally will not effect
the value of an integral. In honor of this deep revelation we usually, when
referring to an integral over any interval or a Lebesgue space, write the
integral as if it is over the corresponding open interval (leaving out the two
endpoints which do not make a difference).

There is one minor addition to the updated “Lebesgue notation” for in-
tegrals which is convenient to use and draws inspiration from Riemann’s
notation. Technically, we should always distinguish, at least in our minds,
between a function which may have a name like f and the values of the
function f(x) at a given x in the domain of the function f . In practice we
often say inaccurate things like “we have a function f = f(x).” At any rate
it is sometimes useful to talk about a function and also have a name for and
refer to the argument of that function in an integral. For example, say we
have a function f . If f : (a, b) → R is continuous, we can happily write

∫ b

a

f(x) sin x dx.

There is, of course, a name for the function determined by the values sin x.
You may not be surprised to know the name of this function is something
like sine. Thus, perhaps the proper way to express the integral above when
f is more complicated and we may need to use a Lebesgue integral is

∫

(a,b)

f sine.
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We never do this however. It is just not really done. Among the things that
people actually write, mostly when trying to write things “correctly,” is

∫

x∈(a,b)

f(x) sin(x).

This is especially helpful if we are integrating with respect to the dependence
in one variable, and there is another variable involved. This is the case, for
example in

∫

x∈(a,b)

f(x) sin(x+ y)

which is defining a function of y. The “general form” is

∫

x∈A

f(x) (4.4)

which indicates Lebesgue integration over a set A of a function f , precisely
the same as the cleaner

∫

A

f.

The notation (4.4) is used if for some reason we wish to indicate a/the variable
of integration. This, as suggested above, comes about for primarily two
reasons: Either there is a function whose name is unusual and disturbing to
see in an integral, e.g.,

∫

A

sine,

or there are other variables involved, e.g.,

∫

x∈Q

χR\Q(x− y).

4.0.2 main answer

Haberman gives a theorem for the term by term integration of a Fourier
series. It is certain that a much more general assertion is valid, but such
results are not commonly stated because many if not most functions useful
for applications have only a finite number of discontinuities. I believe the
following is probably correct though I can’t seem to find an explicit statement
anywhere.
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Conjecture 1. (termwise integration) If f ∈ L
1(−L, L) and

f(x) = a0 +
∞
∑

j=1

aj cos

(

jπ

L
x

)

+
∞
∑

j=1

bj sin

(

jπ

L
x

)

in the sense of L1, then for each x ∈ (−L, L)
∫

(−L,x)

f = a0(x+L)+

∞
∑

j=1

Laj
jπ

sin

(

jπ

L
x

)

+

∞
∑

j=1

Lbj
jπ

[

cos

(

jπ

L
x

)

− (−1)j
]

.

Assuming this result is valid we have (by evalution of the assertion at
x = L)

∫

(−L,L)

f = 2L a0.

Notice this gives a formula for a0:

a0 =
1

2L

∫

(−L,L)

f.

Applying the result to the function g ∈ L
1(−L, L) given by

g(x) = f(x) cos

(

kπ

L
x

)

where k = 1, 2, 3, . . . and evaluating at x = L, we obtain something else
interesting. To see this first observe that

g(x) = a0 cos

(

kπ

L
x

)

+
∞
∑

j=1

aj cos

(

jπ

L
x

)

cos

(

kπ

L
x

)

+

∞
∑

j=1

bj sin

(

jπ

L
x

)

cos

(

kπ

L
x

)

.

This is not immediately of the form of a Fourier series though the first term
would qualify. For the terms in the first summation recall the trigonometric
identity

cos

(

jπ

L
x

)

cos

(

kπ

L
x

)

= cos

(

(j + k)π

L
x

)

+ sin

(

jπ

L
x

)

sin

(

kπ

L
x

)

=
1

2

[

cos

(

(j + k)π

L
x

)

+ cos

(

(j − k)π

L
x

)]
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which follows more or less as indicated from the cosine addition formula.
Upon substitution then we can write

∞
∑

j=1

aj cos

(

jπ

L
x

)

cos

(

kπ

L
x

)

=

∞
∑

j=1

aj
2
cos

(

(j + k)π

L
x

)

+

∞
∑

j=1

aj
2
cos

(

(j − k)π

L
x

)

.

The first term/summation on the right is a sum of fourier modes, and we can
rewrite it

∞
∑

m=k+1

am−k

2
cos

(mπ

L
x
)

just by shifting indices. In the second summation j−k takes infinitely many
positive integer values but also takes the value 0 when j = k and if k > 1
will also take finitely many negative integer values. Overall, we can write

∞
∑

j=1

aj
2
cos

(

(j − k)π

L
x

)

=
k−1
∑

j=1

aj
2
cos

(

(j − k)π

L
x

)

+
ak
2

+

∞
∑

j=k+1

aj
2
cos

(

(j − k)π

L
x

)

=

k−1
∑

m=1

ak−m
2

cos

(

(−m)π

L
x

)

+
ak
2

+

∞
∑

m=1

am+k

2
cos

(mπ

L
x
)

=
ak
2

+
k−1
∑

m=1

(

−ak−m
2

+
am+k

2

)

cos
(mπ

L
x
)

+

∞
∑

m=k

am+k

2
cos

(mπ

L
x
)

.
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Again, this has the form of a Fourier series in L
1(−L, L). Applying the same

approach to the sum

∞
∑

j=1

bj sin

(

jπ

L
x

)

cos

(

kπ

L
x

)

we note first the trigonometric identity

sin

(

jπ

L
x

)

cos

(

kπ

L
x

)

= sin

(

(j + k)π

L
x

)

− cos

(

jπ

L
x

)

sin

(

kπ

L
x

)

=
1

2

[

sin

(

(j + k)π

L
x

)

+ sin

(

(j − k)π

L
x

)]

which gives

∞
∑

j=1

bj sin

(

jπ

L
x

)

cos

(

kπ

L
x

)

=

∞
∑

j=1

bj
2
sin

(

(j + k)π

L
x

)

+

∞
∑

j=1

bj
2
sin

(

(j − k)π

L
x

)

=

∞
∑

m=k+1

bm−k

2
sin

(mπ

L
x
)

+

k−1
∑

j=1

bj
2
sin

(

(j − k)π

L
x

)

+
∞
∑

j=k+1

bj
2
sin

(

(j − k)π

L
x

)

.

Notice here that the constant term drops out because when j = k

sin

(

(j − k)π

L
x

)

= sin(0) = 0.



59

Consequently, this expression becomes

∞
∑

j=1

bj sin

(

jπ

L
x

)

cos

(

kπ

L
x

)

=

∞
∑

m=k+1

bm−k

2
sin

(mπ

L
x
)

−
k−1
∑

m=1

bk−m
2

sin
(mπ

L
x
)

+
∞
∑

m=1

bm+k

2
sin

(mπ

L
x
)

=

k−1
∑

m=1

bm+k − bk−m
2

sin
(mπ

L
x
)

+
b2k
2

sin

(

2kπ

L
x

)

+

∞
∑

m=k+1

bm−k + bm+k

2
sin

(mπ

L
x
)

.

Putting all these calculations together (with some more combining of terms)
we see the function

g(x) = f(x) cos

(

kπ

L
x

)

is indeed expressible as a Fourier series and a Fourier series with constant
term ak/2. Integrating termwise from −L to L, assuming this is justified and
gives correct information, we see

∫

x∈(−L,L)

f(x) cos

(

kπ

L
x

)

= Lak

or

ak =
1

L

∫

x∈(−L,L)

f(x) cos

(

kπ

L
x

)

for k = 1, 2, 3, . . . , which is the value Haberman simply defines as one of the
Fourier coefficients in his boxed equations (3.2.2) on page 91. You can check
that Haberman gives a value of a0 which agrees with the one calculated above,
and you can calculate to see he gives a nice formula for bj when j = 1, 2, 3, . . ..

4.0.3 The space L
2

The real problem with the foregoing discussion is that not every function in
L
1 is represented by its Fourier series. There is the smaller set of functions
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in L
1 which do happen to be represented by their Fourier series in L

1, and
we know what the coefficients have to be in that case, but this set is not very
nicely tied to the norm and does not provide a very satisfactory answer to
our original question.

There is a better answer. Given an interval (a, b) with a, b ∈ R satifying
as always a < b, there is for each p > 1 a Lebesgue space consisting of those
functions f in L

1(a, b) for which the integral
∫

(a,b)

|f |p <∞.

Among these spaces the choice p = 2 is special. These are precisely the
functions that are represented by their Fourier series, and the natural con-
vergence of Fourier series is with respect to the L

2 norm which looks like
this:

‖u‖L2 =

(
∫

u2
)1/2

.

It’s also true that L
2(a, b) ⊂ L

1(a, b), so if there are going to be Fourier
coefficients, they have to be the ones we found for L1. Specifically, there is a
thing called the Hölder inequality which says that if p, q > 1 with

1

p
+

1

q
= 1,

then given f ∈ L
p and g ∈ L

q the product fg is in L
1 with

‖fg‖L1 =

∫

|fg| ≤ ‖f‖Lp ‖g‖Lq (4.5)

where

‖f‖Lp =

(
∫

|f |p
)1/p

and ‖g‖Lq =

(
∫

|g|q
)1/q

.

Hence you can just take p = q = 2 and and g = 1 to see

‖f‖L1 ≤ (b− a)1/2 ‖f‖L2.

so L
2(a, b) ⊂ L

1(a, b). In fact, in the special case p = q = 2 both the
functions f and g in (4.5) are in the same space, and the left side of (4.5) is
often recognized to define or at least involve the values of a function

〈 · , · 〉 : L2(a, b)× L
2(a, b) → R
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satisfying

〈f, g〉 =
∫

(a,b)

fg.

This function is called an inner product on L
2 and may be viewed as a

generalization of the usual dot product on Rn. As with the distance function
and the norm there are well-defined properties satisfied by an inner product.

Definition 6. (inner product) Given a linear space X , a function

〈 · , · 〉 : X ×X → R

satisfying

IP1 〈x, x〉 ≥ 0 with equality only if x = 0 is the zero vector in X .

IP2 〈x, y〉 = 〈y, x〉 for all x, y ∈ X .

IP3 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉 and 〈z, ax+ by〉 = a〈z, x〉+ b〈z, y〉 for all
x, y, z ∈ X .

IP1 expresses that the inner product is positive definite, IP2 is symme-
try, and IP3 is called bilinearity. Notice that if one only assumes linearity
in the “first slot,” then linearity in the “second slot” necessarily follows by
symmetry.

A linear space X equipped with such a function is called an inner prod-
uct space.

Oddly enough a linear space of functions with an inner product admits a
notion of angle between pairs of nonzero functions with the angle θ between
f and g satisfying 0 ≤ θ ≤ π given by

θ = cos−1

( 〈f, g〉
‖f‖ ‖g‖

)

. (4.6)

In particular, two functions in an inner product space3 are said to be orthog-
onal or perpendicular if 〈f, g〉 = 0. When Haberman says the Fourier co-
efficients are derived using “certain orthogonality integrals,” this is what he
means, though he never introduces the notion of an (abstract) inner product
space or the space L

2(−L, L) of square integrable functions.

3Or more generally two elements in any inner product space.
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Implicit in (4.6) is the fact that a linear space with an inner product is a
normed space with a specific norm induced by the inner product; specifically
in (4.6)

‖f‖ =
√

〈f, f〉. (4.7)

The main interesting part in showing the formula (4.7) for the inner product
norm actually defines a norm, specifically showing the triangle inequality for
norms holds for the function ‖ · ‖ : X → [0,∞) defined in (4.7), is usually
executed using an inequality called the Cauchy-Schwarz inequality.

Theorem 12. (Cauchy-Schwarz inequality) In any inner product space X
one has

|〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ X .

Of course this same inequality is expressed without the suggestive use of the
norm notation by

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 or |〈x, y〉| ≤
√

〈x, x〉
√

〈y, y〉.

Technically, there is a slight problem in that L
p is not a normed space

as it stands and in particular L2 is not quite an inner product space. There
are, however, in all cases closely related normed spaces Lp, and the spaces
L
p we have introduced for p > 1 make a pretty good stand-in for the nicer

Lp spaces. I won’t get into the details of this technical glitch, but I’ll leave
it to you to figure out the possible shortcomings of Lp.

In view of the foregoing discussion, when we look at a Fourier expansion

f(x) = a0 +
∞
∑

j=1

aj cos

(

jπ

L
x

)

+
∞
∑

j=1

bj sin

(

jπ

L
x

)

as in (4.1) it is most natural to view the right side as a kind of infinite linear
combination orthogonal basis vectors in L

2(−L, L) and focus not only on the
coefficients, but the functions comprising the basis as well. These functions
are v0 the constant function with v0(x) ≡ 1,

vj = cos

(

jπ

L
x

)

for j = 1, 2, 3, . . .

and

wj = sin

(

jπ

L
x

)

for j = 1, 2, 3, . . . .
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These functions form an orthogonal basis for L2(−L, L) in the sense that
∫

v0vj =

∫

(1)vj = 0 and

∫

v0wj

∫

(1)wj = 0 for j = 1, 2, 3, . . . ,

∫

vjvk = 0 =

∫

wjwk for j, k = 1, 2, 3, . . . , with j 6= k

and
∫

vjwk = 0 for all j, k = 1, 2, 3, . . ..

The other interesting numbers are the norms associated with these basis vec-
tors/functions v0, v1, v2, v3, . . . , w1, w2, w3, . . .. The squares of those numbers
are

‖v0‖2 =
∫

v20 =

∫

1 = 2L,

‖vj‖2 =
∫

x∈(−L,L)

cos2
(

jπ

L
x

)

=

∫

x∈(−L,L)

1

2

[

1 + cos

(

2jπ

L
x

)]

= L

for j = 1, 2, 3, . . ., and
‖wj‖2 = L

for j = 1, 2, 3, . . . as well.
Let’s see how this all works. Take L = 1 and consider the function

f ∈ Cω[−1, 1] with values f(x) = x−x3. Of course, Cω[−1, 1] ⊂ L(−1, 1) so
we can expect a Fourier series expansion

f = a0 +

∞
∑

j=1

ajvj +

∞
∑

j=1

bjwj.

This particular function has a property which will be of interest to us in
general, specifically, f is odd meaning that

f(−x) = −f(x) for x ∈ [−1, 1].

Generally, we say a function f is odd if f(−x) = −f(x) for all x in the
domain of f (and of course both x and −x are in the domain of f whenever
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x is). Also, a function f is even if f(−x) = f(x) for all x. These two
properties will come up again. But this particular function f(x) = x− x3 is
odd. As a consequence

∫

(−L,L)

f =

∫

(−L,0)

f +

∫

(0,L)

f

=

∫

x∈(−L,0)

f(x) +

∫

(0,L)

f

=

∫

x∈(0,L)

f(−x) +
∫

(0,L)

f (4.8)

=

∫

x∈(0,L)

[−f(x)] +
∫

(0,L)

f

= −
∫

x∈(0,L)

f(x) +

∫

(0,L)

f

= 0.

In fact, whenever an odd function is integrated on a symmetric interval the
result is always zero. Incidentally, the change of variable in (4.8) may have
struck you as lacking a minus sign. It’s actually okay because when you
integrate on sets, as one does with Lebesgue integration, the usual convention
of orientation for Riemann integrals do not apply. To be very specific on this,
so you can get it straight, let me state a result:

Theorem 13. (change of variables) If f ∈ L
1(a, b) and ψ : (c, d) → (a, b) is

a differentiable monotone change of variables, then
∫

(a,b)

f =

∫

(c,d)

f ◦ ψ |ψ′|. (4.9)

Notice the absolute value of ψ′ in the scaling factor. This is in contrast
to the familiar Riemann integral change of variable formula which would (or
might) look like

∫ b

a

f(x) dx =

∫ ψ−1(b)

ψ−1(a)

f ◦ ψ(ξ) ψ′(ξ) dξ.

The point is that maybe ψ−1(a) > ψ−1(b), so the definition of

∫ ψ−1(b)

ψ−1(a)

f ◦ ψ(ξ) ψ′(ξ) dξ
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in this case is

∫ ψ−1(b)

ψ−1(a)

f ◦ ψ(ξ) ψ′(ξ) dξ = −
∫ ψ−1(a)

ψ−1(b)

f ◦ ψ(ξ) ψ′(ξ) dξ

=

∫

ξ∈(ψ−1(b),ψ−1(a))

f ◦ ψ(ξ) ψ′(ξ).

This is the Riemann integral orientation convention. You can check that the
signs line up correctly so that the absolute value in (4.9) gives the correct
answer when one is integrating directly on intervals as sets.

Returning to f(x) = x − x3, we have shown that the coefficient of the
basis function v0 ≡ 1 is

a0 =
1

L

∫

(−L,L)

f = 0.

More generally, the product of an odd function, like f , with an even function
like vj for j = 1, 2, 3, . . . is odd, so

aj =
1

2L

∫

x∈(−L,L)

f(x) cos

(

jπ

L
x

)

= 0.

That is, for an odd function on (−L, L), all the coefficients of even basis
functions vanish.

Now the real work begins. For the nonzero coefficients we need to calcu-
late

bj =
1

L

∫

x∈(−L,L)

f(x) sin

(

jπ

L
x

)

=
1

L

[
∫

x∈(−L,L)

x sin

(

jπ

L
x

)

−
∫

x∈(−L,L)

x3 sin

(

jπ

L
x

)]

. (4.10)

There are various ways to proceed. I think they all pretty much involve inte-
gration by parts, so one needs to get used to that. Also, using mathematical
software with an integration facility can be handy at least to double check
answers. It’s easy to make errors. Taking first the integral

∫

x∈(−L,L)

x3 sin

(

jπ

L
x

)

,
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I’ll take u = x3 and

dv = sin

(

jπ

L
x

)

dx

so that du = 3x2 dx and

v = − L

jπ
cos

(

jπ

L
x

)

.

The integration by parts formla
∫

u dv = uv −
∫

v du then gives

∫

x∈(−L,L)

x3 sin

(

jπ

L
x

)

= −x3 L

jπ
cos

(

jπ

L
x

)

∣

∣

L

x=−L

+ 3
L

jπ

∫

x∈(−L,L)

x2 cos

(

jπ

L
x

)

.

= −2L4

jπ
(−1)j +

3L

jπ

∫

x∈(−L,L)

x2 cos

(

jπ

L
x

)

.

This suggests to me the separate consideration of
∫

x∈(−L,L)

x2 cos

(

jπ

L
x

)

= x2
L

jπ
sin

(

jπ

L
x

)

∣

∣

L

x=−L

− 2
L

jπ

∫

x∈(−L,L)

x sin

(

jπ

L
x

)

= −2L

jπ

∫

x∈(−L,L)

x sin

(

jπ

L
x

)

,

and finally
∫

x∈(−L,L)

x sin

(

jπ

L
x

)

= −x L

jπ
cos

(

jπ

L
x

)

∣

∣

L

x=−L

+
L

jπ

∫

x∈(−L,L)

cos

(

jπ

L
x

)

= −2L2

jπ
(−1)j +

(

L

jπ

)2

sin

(

jπ

L
x

)

∣

∣

L

x=−L

= −2L2

jπ
(−1)j .
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Substituting back, checking with Mathematica, and watching the signs, hope-
fully the following should be correct:

∫

(−L,L)

x sin

(

jπ

L
x

)

= −2L2

jπ
(−1)j ,

∫

x∈(−L,L)

x2 cos

(

jπ

L
x

)

=
4L3

(jπ)2
(−1)j,

and
∫

x∈(−L,L)

x3 sin

(

jπ

L
x

)

=
2L4

jπ
(−1)j

[

−1 +
6

(jπ)2

]

.

Returning to (4.10) we see

bj =
2

L

[

−L
2

jπ
+
L4

jπ
− 6L4

(jπ)3

]

(−1)j

=
L

jπ

[

−1 + L2 − 6L2

(jπ)2

]

(−1)j.

Finally, taking account of the fact that L = 1 we get

bj =
12

(jπ)3
(−1)j+1,

and we can expect
lim
n→∞

‖fn − f‖L2 = 0

where

fn(x) =
12

π3

n
∑

j=1

(−1)j+1

j3
sin

(

jπ

L
x

)

and

‖fn − f‖L2 =

(
∫

(fn − f)2
)1/2

as usual. Of course in this case f ∈ Cω[−1, 1] and we can expect pointwise
convergence and even uniform convergence of any fixed number of derivatives.
In Figure 4.1 I have plotted |fn− f | for n = 2, n = 3 and n = 10. This gives
a pretty good indication that I’ve gotten the coefficients correct.

You may ask why one would turn in a perfectly good function like x−x3

for a complicated series of sines. One answer is that these sinusoidal functions
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Figure 4.1: The C0 or L∞ error |fn−f | of the Fourier series for f(x) = x−x3
for partial sums with 2 terms (left), 3 terms (middle), and 10 terms (right).

have some special properties with respect to derivatives. Surely you noticed
when you took/learned ODEs that

v′′j = −
(

jπ

L

)2

vj and w′′
j = −

(

jπ

L

)2

wj

for j = 1, 2, 3, . . .. This observation has some interesting consequences for
the three partial differential equations we want to consider. For example, if
we look at the function u : [0, L]× [0,M ] → R of two variables given by

u(x, y) = sin

(

jπ

L
x

)

sin

(

jπ

M
y

)

, (4.11)

then

∆u =
∂u

∂x2
+
∂u

∂y2
= −(jπ)2

(

1

L2
+

1

M2

)

u.

That is, the product of Fourier basis functions given in (4.11) is a kind of
eigenfunction for the Laplace operator ∆ : C∞([0, L]× [0,M ]).

Looking at this another way, we have found an explicit solution of the
Poisson partial differential equation

∆u = −(jπ)2
(

1

L2
+

1

M2

)

sin

(

jπ

L
x

)

sin

(

jπ

M
y

)

satisfying u(x, y) ≡ 0 for (x, y) in the boundary of the rectangle U = [0, L]×
[0,M ]. This may seem kind of special, but solutions of partial differential
equations are not so easy to come by, so any explicit solutions you happen
to know about may turn out to be of use.
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It turns out that if you have zero boundary conditions like this, say on
the rectangle U = [0, L] × [0,M ], then there are no interesting solutions to
Laplace’s equation ∆u = 0. The only solution is just u ≡ 0. You can find
interesting solutions of Laplace’s equation however if you take, for example,

u(x, y) = sin

(

jπ

L
x

)

sinh

(

jπ

L
y

)

.

Again this kind of explicit solution turns out to be useful in solving more
general problems due to the connection with Fourier series.

Another PDE of interest in the heat equation

ut = uxx or
∂u

∂t
=
∂2u

∂x2
.

Taking

u(x, t) = eat sin

(

jπ

L
x

)

it is possible to pick the constant a so that u = u(x, t) is a solution of the
heat equation. Try it.

Finally,

u(x, t) = cos(ωt) sin

(

jπ

L
x

)

will be an explicit solution of the wave equation

∂2u

∂t2
=
∂2u

∂x2

if the constant ω is chosen correctly.
In short, the Fourier basis functions appear as “pieces” of solutions of the

partial differential equations we are supposed to learn something about, and
ultimately this is why we are interested in them. Though it’s also very cool
to be able to express or approximate a given function in terms of the Fourier
basis functions, and this has other applications inside and outside PDE.
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The Heat Equation
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The Wave Equation
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