
Classical Mathematical Methods in Engineering
Lecture 4 Monday January 26, 2026 (snow day)

Two-point boundary value problem(s)
and Sturm-Liouville Theory

John McCuan

January 26, 2026

1 Two point boundary value problems

1.1 Last time. . .

We considered briefly the two point boundary value problem






x′′ + t2x = t3, 0 ≤ t ≤ L
x(0) = x0,
x(L) = xL.

(1)

We found a basis of solutions for the homogeneous problem

x′′h + t2xh = 0

having the form

X0 = 1 +

∞
∑

k=1

αkt
4k

and

X1 = t+

∞
∑

k=1

βkt
4k+1.

With these we attempted to solve the implied two point boundary problem






x′′h + t2xh = 0, 0 ≤ t ≤ L
xh(0) = x0,
xh(L) = xL − L.

(2)

for xh. The left boundary condition implied a0 = x0, but the second boundary condition

a1X1(L) = xL − L− x0X0(L) (3)

was noted to be complicated when X1(L) = 0. We plotted X1 using partial sums of the power series and
produced pretty good evidence that X1 has at least one positive zero z1 with z1

.
= 2.35834. See Figure 1.

Thus, if 0 < L < z1 we can solve for the coefficient a1 and solve the problem. If L = z1 things get
complicated. There are probably some values of L > z1 where we can solve the problem, but it is not so
clear what happens after that, and definitely our ability to discern what is happening for L large using the
power series seems limited.

We seek in the end to find a more general framework according to which we might know what to expect
concerning the solvability of (3) and hence the solvability of (2) and hence the solvability of (1).
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Figure 1: Plots of X0 and X1 from the power series.

1.2 Partial summary

Hopefully the discussion so far has served to provide something of a review of ODEs. In particular, hopefully
you can recognize a second order linear operator and distinguish that operator from an inhomogeneity in
the equation. There are many other kinds of ODEs and many other things it is good to know, but hopefully
we’ve reviewed a point or two and suggested a thing or two that may be new to you:

1. In an equation like x′′ + t2x = t3, the linear operator L : C2(R) → C0(R) has values1 given
by Lx = x′′ + t2x. The function with values q(t) = t2 here is a coefficient of the operator. The
function with values f(t) = t3 on the “right hand side” is the inhomogeneity in the equation. The
inhomogeneity may also be considered a coefficient in the equation.

2. If one can find a particular solution, in this case yp = t, then pretty much any questions one
might have about this ODE can be reduced to corresponding questions about the corresponding

homogeneous ODE x′′h + t2xh = 0.

3. The initial value problem (IVP) has a good existence and uniqueness theory associated with it.

4. The two point boundary value problem (BVP) is generally more complicated.

5. In this example the solvability of the two point boundary value problem on an interval [0, L] for
L > 0 is intimately related to the positive zeros of X1.

6. We do not have a very good handle at the moment on the situation with the positive zeros of X1,
though we can say something using power series solutions.

There are examples for which the two point boundary value problem always has a unique solution. You
should see some problems like that in the homework assignment. I’m now going to consider a simpler
second example to emphasize some of the complications that can arise and should be expected.

1It may be noticed that the symbol L has been used in these notes and in my lectures to mean two very different things.
On the one hand, L denotes a second order linear ordinary differential operator, and on the other hand, the same symbol
L denotes the right endpoint of an interval, so one might even see the clashing notation appear as L : C2[0, L] → C0[0, L].
I’m going to keep going with this “inconsistency,” and I hope you can follow the “ideas” closely enough so that such small
inconsistencies in notation don’t cause a problem. If you have a suggestion for better notation, I’m all ears. Obviously
Haberman didn’t figure out better notation as you can see on pages 36–37.
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1.3 Simpler BVP

First of all I will concentrate on a simpler second order linear operator, namely

Lx = x′′ + x.

I will also start immediately with the associated homogeneous ODE and have a look at the two point
boundary value problem:







x′′ + x = 0, 0 ≤ t ≤ L
x(0) = x0,
x(L) = xL.

(4)

Here the general solution also has the form x = a0X0(t) + a1X1(t). You can find it/them using power
series. You may also remember other approaches. I’ll use one you should remember using a technique
called “familiarity with functions.” For this technique we look at the ODE and interpret it in words:

x′′ = −x

means “find a function whose second derivative is minus the function.” The functions cos t and sin t have
this property, and {cos t, sin t} is a basis of solutions for this homogeneous problem. Notice that taking
X0(t) = cos t and X1(t) = sin t we have

X0(0) = 1

X ′

0(0) = 0

X1(0) = 0

X ′

1(0) = 1

which should look familiar. These conditions are extremely well-suited for the IVP.

Exercise 1 Pose the IVP at t = 0 associated with x′′ + x = 0 and find the unique solution.

The two point boundary value problem is another story. Only the zero order conditions X0(0) = cos 0 = 1
and X1(0) = 0 are of immediate use yielding

x(0) = a0 = x0

as you should find for the initial value problem. After that we are faced with

x(L) = x0cos(L) + a1 sin(L) = xL.

Thus the version of (3) arising here is

a1 sin(L) = xL − x0 cos(L). (5)

We know exactly what happens in this case: If L /∈ {π, 2π, 3π, . . .} = {kπ : k = 1, 2, 3, . . .}, then sin(L) 6= 0,
and we can solve (5) uniquely:

a1 =
xL − x0 cos(L)

sin(L)
.

Consequently, we can solve the two point boundary value problem (4) uniquely:

x(t) = x0 cos t+
xL − x0 cos(L)

sin(L)
sin t.
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If L = kπ for some k ∈ N = {1, 2, 3, . . .} (the natural numbers), then either k is odd and has the form
k = 2m + 1 for some m ∈ N0 = {0, 1, 2, 3, . . .} (the natural numbers with zero) or k is even and has the
form k = 2m for some m ∈ N0. If k = 2m+ 1 is odd and L = (2m+ 1)π, then cos(L) = −1 and

the problem (4) has no solution if xL 6= −x0, and
the problem (4) has infinitely many solutions x(t) = x0 cos t + a1 sin t if xL = −x0.

Similarly, if k = 2m is even and L = 2mπ, then cos(L) = 1 and

the problem (4) has no solution if xL 6= x0, and

the problem (4) has infinitely many solutions x(t) = x0 cos t+ a1 sin t if xL = x0.

The point is the following: One can see exactly what happens because one knows the function sin t and
exactly where the zeros of sin t happen to fall.

1.4 A different problem

You should get the idea here that what happens with two point boundary value problems for ODEs can
be somewhat complicated, especially when one isn’t immediately familiar with the detailed properties of
some basis solution for a homogeneous ODE. Mathematicians have responded to this situation in a couple
different ways. One thing that has been done is that certain “special functions” that come up in a variety of
applications and are basis solutions of particular homogeneous ODEs have been studied carefully and hard.
Many things are known about these solutions, and maybe you know some of their names. Obviously the
most famous are sine and cosine. There are also Bessel functions, Legendre polynomials, Airy functions,
Hermite polynomials, and others. These functions will have standard implementations in mathematical
software, and many properties are known about them.

The other response is a more general one, and also perhaps a somewhat unexpected one, that can be
thought of in this way: Set aside the two point boundary value problem, and consider a different kind
of problem called a Sturm-Liouville problem. We were able to solve (4) but let us begin by casting that
problem into the Sturm-Liouville framework as a first example.

Instead of trying to solve






x′′ + x = 0, 0 ≤ t ≤ L
x(0) = x0,
x(L) = xL

(6)

directly, introduce an additional parameter and make finding that parameter part of the problem. The
Sturm-Liouville version of (6) is







x′′ + x+ λx = 0, 0 ≤ t ≤ L
x(0) = 0,
x(L) = 0.

(7)

If you think about it, the introduction of an extra parameter—or an extra degree of freedom if you like—
should make the problem easier to solve. On the other hand, one now has more things to solve for. On
the the third hand (if you happen to have three hands) we have simplified the boundary values which have
a couple interesting consequences. One of those consequences is that the problem always has a “trivial
solution” x(t) ≡ 0. We’ll discuss this more later.

In any case, the real advantage is that there is a general theory of existence and uniqueness that goes
along with such problems and, in a certain sense, captures a consistent vision of what we (and others)
found complicated about two point boundary value problems.
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Let’s try to solve this strange first Sturm-Liouville problem (7) without really knowing what we should
expect for a solution. The first thing we might observe is that the general form of the solution of the ODE

x′′ + (1 + λ)x = 0,

assuming λ is some fixed real constant, depends on λ. If 1 + λ > 0, i.e., λ > −1, then we again get sines
and cosines, but not exactly necessarily cos t and sin t—those are only for λ = 0. On the other hand if
λ < −1 something different happens. There are cases.
CASE 1: λ < −1.

Just to be clear, we are starting here with the assumption that λ is a fixed real number with λ < −1,
and we want to then consider the two point boundary value problem







x′′ + (1 + λ)x = 0, 0 ≤ t ≤ L
x(0) = 0,
x(L) = 0

involving the modified operator Lx = x′′ + (1+ λ)x. We could use “familiarity with functions” to find the
general solution of this ODE, but as this is still something of a review of ODEs, let me recall a different
approach with which you are probably familiar. This approach which is known to work, in some way,
shape, or form, for constant coefficient linear ODEs is called “try an exponential.” Accordingly, we write

x(t) = eαt

where the coefficient α is a real number to be determined. In this case writing −(λ+ 1) = µ2 > 0 because
λ+ 1 < 0 we find

x′′ − µ2x = α2eαt − µ2eαt = (α2 − µ)2eαt.

The exponential function, in case you have forgotten, never vanishes—no matter what. Therefore, if we
have x′′ −mu2x = 0 in this case, then we must have

α2 − µ2 = (α− µ)(α + µ) = 0.

This is a polynomial equation for α having two real solutions corresponding to two basis functions for the
ODE and a general solution of the form

x(t) = a0e
µt + a1e

−µt = a0e
−(1+λ)t + a1e

(1+λ)t.

This is a perfectly good general solution we have here. Some experience (and some linear algebra based on
the fact that the set of solutions for a homogeneous linear ODE is a vector space) suggests we might trade
in the original exponential basis {e−µt, eµt} for a more convenient one as follows: Take as X0 the linear
combination

X0(t) =
1

2
eµt +

1

2
e−µt.

This is a function known as cosh(µt) pronounced sort of like “gosh!” and also is called the hyperbolic
cosine. You can check that in this case we have

X0(0) = 1 and X ′

0(0) = 0.

Again, many properties of this “special function” are known. For example cosh is even and convex. Also,

X ′

0(t) = µ sinh(µt) = µ

(

1

2
eµt − 1

2
e−µt

)

.
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Appearing here is the hyperbolic sine, which is odd, and if we set X1(t) = sinh(µt) we get a different basis
of solutions {X0, X1} for the solution space of our ODE with the second basis element satisfying

X1(0) = 0 and X ′

1(0) = µ.

This sort of change of basis is convenient. You’ll notice for example that with the exponential basis we get

eµt∣
∣

t=0

= 1 = e−µt
∣

∣

t=0

and
d

dt
eµt∣

∣

t=0

= µ = − d

dt
e−µt

∣

∣

t=0

.

The convenience really comes out when we take the boundary values into account: Taking

x(t) = a0X0(t) + a1X1(t) = a0 cos(µt) + a1 sinh(µt) = a0 cos[(1 + λ)t]− a1 sinh[(1 + λ)t]

we need
a0 cosh(0) + a1 sinh(0) = 0 = a0 cosh(L)− a1 sinh(L).

This means a0 = 0 (left equation) and a1 sinh(L) = 0 (right equation). Since the lone zero of sinh t is at
t = 0, we know sinh(L) 6= 0, and a1 = 0. Thus we have found the unique solution: x(t) ≡ 0.

This is a solution we expected to have. It’s a little disappointing, but everything we have done is very
determinate. There are no questions: In CASE 1 we only get the zero or “trivial” solution.
CASE 2: 1 + λ = 0.

In this case, the ODE becomes x′′ = 0. This has general solution x(t) = a0+a1t with basis of solutions
{1, t}. The boundary condition x(0) = 0 forces a0 = 0 again. And then the boundary condition x(L) = 0
forces a1L = 0 or a1 = 0.

Again there is only the trivial solution.
CASE 3: 1 + λ = µ2 > 0.

Now we get the ODE x′′ = −µ2x. As mentioned, we’ll get sines and cosines here. Let’s recall how to
do that using the “try an exponential solution” approach, which should hold for us some fond memories
and some insightful observations.

Setting x(t) = eαt yields
α2eαt = −µ2eαt.

Again since eαt 6= 0 we get α2 = −µ2 and α = ±µi. Here i is the complex number
√
−1. You may not

have thought about it before, but the existence and uniqueness theory for initial value problems, and for
the consideration of ODEs in general, works perfectly well for solutions x : (0, L) → C which are complex
valued. Thus, considering the ode x′′ + µ2x = 0 as an ODE for a complex valued function, there is indeed
a basis of solutions for all the solutions. The basis still has exactly two elements, and it is

{

eiµt, e−iµt

}

. (8)

These functions may be somewhat less familiar to you, but here is a nice formula that should bring them
(at least somewhat) down to earth:

eiθ = cos θ + i sin θ.

This is called Euler’s formula, and it expresses a complex exponential in terms of a “standard form”
complex number. Thus, our basis for all complex solutions can also be written as

{

cos(µt) + i sin(µt), cos(µt)− i sin(µt)

}

.

We have taken account here of the fact that sin is odd so sin(−µt) = − sin(µt). And also cos is even.
In any case, these are complex solutions, but there are real solutions. If we squint a little, we can see

the real solutions—the ones in which we were originally interested—as linear combinations of the complex
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solutions we’ve got. This is rather like what we did in CASE 1 exchanging the real exponentials for cosh
and sinh. Here’s what I get when I squint:

1

2
[cos(µt) + i sin(µt)] +

1

2
[cos(µt)− i sin(µt)] = cos(µt).

Thus X0(t) = cos(µt) is a real basis solution. Also,

1

2i
[cos(µt) + i sin(µt)]− 1

2i
[cos(µt)− i sin(µt)] = sin(µt).

Thus, we can trade in the complex basis for a basis of real valued functions

{cos(µt), sin(µt)}.

These functions span exactly the same space of complex solutions as long as we use complex numbers for
coefficients in our linear combinations. If we just use real coefficients however, we get a two-dimensional
real subspace of real solutions. And that’s nice. We can turn again to the boundary values (for the third
time on this problem):

a0cos(µt)∣
∣

t=0

+ a1sin(µt)∣
∣

t=0

= 0

means of course a0 = 0, and this is looking like a story we’ve heard before. Finally then we consider

a1sin(µt)∣
∣

t=L

= a1 sin(µL) = 0.

Notice that the trouble with a vanishing coefficient in our quest to solve for a1 has become curiously
reversed. If sin(µL) 6= 0, then we do get a unique solution, but it is only the trivial solution with x(t) ≡ 0
again. But now the vanishing of the coefficient can lead to infinitely many solutions of a nice variety. That
is, precisely when

µL = kπ for some k ∈ N

we get that a1 sin(µL) solves the two point boundary value problem (7) for every a1 ∈ R. Translating back
into terms of the original Sturm-Liouville parameter/eigenvalue λ we get a sequence of values

λk =
k2π2

L2
− 1

because 1 + λ = µ2. Some of these numbers might be negative if L is large, but eventually for k large the
numbers λk will be positive and tend toward positive infinity. This kind of behavior captures the general
situation with Sturm-Liouville problems.

2 Sturm-Liouville theory

I’m going to change notation. Instead of x = x(t) for solutions of our ODEs suggesting time as the
independent variable and x as who knows what, I’m going to use x suggesting space as the independent
variable—though that doesn’t always have to be the case, but that is the tradition in Sturm-Liouville
theory. Maybe that’s the notation used by Sturm and Liouville. In any case, we’ll now have a function
φ = φ(x).

The general Sturm-Liouville problem is the following: Find all real values λ and functions φ ∈
C2[a, b]\{0} satisfying







(pφ′)′ + qφ+ λσφ = 0 a < x < b
α0φ(a) + β0φ

′(a) = 0
α1φ(b) + β1φ

′(b) = 0.
(9)
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In our problem (7) above we have p and q and σ are the constant functions with value identically 1, but
in general p and q and σ can be some functions of x. We had a = 0 and b = L with α0 = α1 = 1 and
β0 = β1 = 0.

Here the second order linear operator Lφ = (pφ′)′+qφ = pφ′′+p′φ′+qφ is called the Sturm-Liouville

operator. The equation
(pφ′)′ + qφ+ λσφ = 0 (10)

is called the Sturm-Liouville ODE. Note, however, it is not really just an ODE, but rather an ODE with
an unknown real parameter λ. Furthermore, the equation is

Lφ = −λσφ.

This looks a little bit like an eigenvalue problem from linear algebra (Av = λv). For this reason the
equation (10) is called a Sturm-Liouville eigenvalue problem. Like an eigenvalue problem from linear
algebra, zero eigenvalues λ are okay, but zero eigenvectors don’t count. A function φ along with a Sturm-

Liouville eigenvalue λ satisfying (9) is typically called a (Sturm-Liouville) eigenfunction. If you find
a solution (λ, φ) then every nonzero multiple of φ is also an eigenfunction.2

Sometimes the entire Sturm-Liouville problem (9) is also called a Sturm-Liouville eigenvalue problem.
In any case, those are pretty much the general outlines of the players in the problem and how such a

problem works.
There are many theorems and related results about Sturm-Liouville problems. The result I will state

below to give a general flavor of what to expect applies to Sturm-Liouville problems which are said to be
regular, and it is somewhat important to know what to look for in order to see if a particular Sturm-
Liouville problem is regular or not. Many Sturm-Liouville problems are not regular and some or all of the
assertions in the theorem below still hold for many of those problems. However, there are a few aspects of
a regular problem that are crucial...or should not be violated in a way that is too serious.

The basic idea is that the coefficient functions p and σ should be positive. The coefficient p is the
leading coefficient in the Sturm-Liouville operator and for a regular problem one should have

p(x) > 0 for a ≤ x ≤ b.

The function σ is called the L2 weight and for a regular problem this one should also satisfy

σ(x) > 0 for a ≤ x ≤ b.

All three coefficient functions p, q, and σ should be continuous:

p, q, σ ∈ C0[a, b].

Finally each of the boundary conditions should be saying something. For a regular problem it is required
that

|α0|+ |β0| > 0 and |α1|+ |β1| > 0.

The coefficients α0, α1, β0 and β1 are just real constants. I will come back to the boundary conditions a
little later.

2The notion of an eigenfunction being “zero” might deserve some comment. The exclusion φ ∈ C2[a, b]\{0} excludes the
function with values constant zero. This does not mean the function φ does not admit certain arguments x ∈ [a, b] for which
φ(x) = 0, i.e., zeros of the function, but it just means the function cannot be identically zero. One might ask if this makes
sense in the sense of vectors in a vector space C2[a, b], but it does.
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Here is the main result:

Theorem 1 A regular Sturm-Liouville problem has a sequence of solutions, i.e., eigenvalue/eigenfunction
pairs (λj , φj), j = 1, 2, 3, . . ., and the following hold:

1. (eigenvalue properties)

(a) All eigenvalues are real numbers.

(b) The eigenvalues/eigenfunctions may be ordered so that

λ1 < λ2 < λ3 < · · ·

and λj tends to +∞ as j tends to ∞:

lim
j→∞

λj = +∞.

(There is a unique smallest eigenvalue.)

2. (basic eigenfunction properties)

(a) Each eigenspace is one-dimensional:

{φ ∈ C2[a, b] : Lφ+ λσφ = 0} = span{φj}.

(b) The eigenfunction φj has exactly j − 1 zeros on (a, b).

3. (L2 eigenfunction properties)

(a) {φj}∞j=1 is a “complete” subset of (weighted) L2(a, b) space: This means in particular that one
can write any function φ ∈ L2(a, b) as a series3

φ =

∞
∑

j=1

ajφj.

This is called an eigenfunction expansion.

(b) {φj}∞j=1 is an “orthogonal” sequence in L2(a, b) ∩ C2[a, b]:

∫

(a,b)

φi(x) φj(x) σ(x) = 0, i 6= j.

(This is why σ is called the weight function.)

3The actual meaning of the equality here and exactly which functions are included, i.e., what is the space of L2 functions,
require some explanation, but you can think of power series or Fourier series to perhaps get some idea. We should come back
to this property in more detail later.
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2.1 Brief comment on L2(a, b)

You may recall our discussion of regularity in which the continuous functions C0[a, b] or C0(a, b) comprise
a relatively large set compared to various functions with derivatives:

C0(a, b) ⊃ C1(a, b) ⊃ C2(a, b) ⊃ · · · ⊃ C∞(a, b) ⊃ Cω(a, b)

with Cω(a, b) denoting the real analytic functions on the open interval (a, b). It is difficult to make
a rigourous comparison specifying the interval (a, b) or [a, b] precisely, but let me write in some vague
schematic fashion

L2 ⊃ C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ C∞ ⊃ Cω.

The idea this is supposed to suggest is that L2 is a vastly larger vector space of functions than the functions
which are continuous or differentiable. On the far right with the real analytic functions one has power
series expansion.

On the far left one has eigenfunction expansion which is much more general.
One other comparison/comment: R2, R3 and Rn are finite dimensional normed vector spaces with

|(x1, x2, . . . , xn)| =

√

√

√

√

n
∑

j=1

x2j

and these are also inner product spaces with inner product

〈x,y〉 =
n

∑

j=1

xjyj.

Note |x| =
√

〈x,x〉.
The spaces Ck[a, b] are also normed spaces, but they are not inner product spaces.
The space

L2(a, b) =

{

φ :

∫

(a,b)

φ2 <∞
}

is a normed vector space with norm

‖φ‖L2 =

√

∫

(a,b)

φ2.

Also L2(a, b) is an inner product space with

〈φ, ψ〉L2 =

∫

(a,b)

φψ.

this is how we tell functions in L2 are orthogonal. What I have introduced above is the “standard” version
of L2. There is a similar space called “weighted” L2. For weighted L2

‖φ‖L2 =

√

∫

(a,b)

φ2 σ

and

〈φ, ψ〉L2 =

∫

(a,b)

φψ σ.
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2.2 Boundary conditions

Some of the regular boundary conditions associated with a Sturm-Liouville problem have names. The
condition

φ(a) = φ(b) = 0

is called the Dirichlet boundary condition. The condition

φ′(a) = 0 = φ′(b)

is called the Neumann boundary condition. The conditions

φ(a) = 0 = φ′(b) and/or φ′(a) = 0 = φ(b)

are called Robin or mixed boundary conditions. More generally, one can consider

{

α0φ(a) + β0φ
′(a) = 0

α1φ(b) + β1φ
′(b) = 0

with

det

(

α0 β0
α1 β1

)

6= 0.

These are all regular conditions and they are all homogeneous boundary conditions (due to the zeros
involved).

There are boundary conditions which are not regular but are very common and have a name. These
are periodic boundary conditions:

{

φ(a) = φ(b)
φ′(a) = φ′(b).

Exercise 2 Solve the Sturm-Liouville problem associated with the operator Lφ = φ′′, with weight σ ≡ 1
on [0, L] and with periodic boundary conditions.

3 Application to the two point boundary value problem

I return now to the two point boundary value problem (1)







x′′ + t2x = t3, 0 ≤ t ≤ L
x(0) = x0,
x(L) = xL

(11)

and






x′′h + t2xh = 0, 0 ≤ t ≤ L
xh(0) = x0,
xh(L) = xL − L.

(12)

Looking at this problem, I am motivated to consider the Sturm-Liouville ODE

φ′′ + x2φ+ λσφ = 0 (13)

involving the Sturm-Liouville operator
Lφ = φ′′ + x2φ.

This tells me the leading coefficient p ≡ 1 and a middle coefficient q(x) = x2. I don’t know the weight
function σ = σ(x) at this point.
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Notice that a function φ satisfying Lφ = 0 like X1 with a zero at some value L = z actually satisfies a
two point boundary value problem with homogeneous Dirichlet boundary values:

X1(0) = 0 = X1(L).

The idea here is that I want to somehow “normalize” so that a natural version of (13) arises. Here is an
idea: Let φ(x) = X1(zx) where z is a positive zero of X1. Then φ

′′(x) = z2X ′′

1 (zx), and

Lφ(x) = z2X ′′

1 (zx) + x2X1(zx).

But remember X1 is a solution of the homogeneous ODE x′′h + t2xh = 0. This implies

X ′′

1 (zx) + (zx)2X1(zx) = 0 or X ′′

1 (zx) = −(zx)2X1(zx).

From this I find
Lφ(x) = −z4x2X1(zx) + x2X1(zx) = (1− z4)x2φ

or
Lφ+ λx2φ = φ′′ + x2φ+ λx2φ = 0

where λ = z4 − 1. This strongly suggests (or at least somewhat suggests) consideration of the Sturm-
Liouville problem







φ′′ + x2φ+ λx2φ = 0, 0 < x < 1
φ(0) = 0
φ(1) = 0

(14)

may tell me interesting things about my original problem.
In this problem, the leading coefficient is p ≡ 1, the middle coefficient is q(x) = x2, and the weight

function is σ(x) = x2. I have Dirichlet boundary values on [0, 1].

Everything looks good with this problem. It is almost regular. The only failing is that the weight
σ(x) = x2 vanishes at x = 0. Let me assume for a moment however that the conclusions of the Sturm-
Liouville theory/theorem hold, then I expect a sequence of eigenvalues

λ1 < λ2 < λ3 < · · · .

If this is true, this tells me something rather important. There is a potential relation

z4 = λ+ 1 (15)

between the positive zeros z of X1 and the Sturm-Liouville eigenvalues of (14). In fact we know every
positive zero does definitely correspond to a Sturm-Liouville eigenvalue for this problem. Furthermore,
assuming the eigenvalues are increasing and become arbitrarily large, we might imagine, at least at first,
there are some eigenvalues λ < −1 for which (15) has no real roots, but eventually there will be a first
eigenvalue λk with

λk + 1 > 0.

Then we can write
z1 =

4

√

λk + 1 and z1+j =
4

√

λk+j + 1

for every j = 1, 2, 3, . . ..
If we go further and assume each eigenfunction φj corresponding to λj has exactly j−1 zeros on (0, 1),

then the first eigenfunction φ1 will not vanish on (0, 1) at all, and we can assume φ1 > 0. The natural
question is the following: Can we find or say something about φ1?
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Here is a key idea: The eigenfunction φ1 will (more or less) be a solution to the IVP







φ′′ + x2φ+ λx2φ = 0, 0 < x < 1
φ(0) = 0
φ′(0) = 1.

(16)

Why is this true, and what do I mean by “more or less?” I’ve already mentioned that φ1 is not supposed
to vanish. If we can find a non-vanishing solution, then that solution is either all positive valued or all
negative valued. If we end up with φ1(x) < 0 for 0 < x < 1, then −φ1 is also a solution with −φ1(x) > 0
for 0 < x < 1.

Assuming now φ1 > 0 we know, φ′
1(0) ≥ 0, but if φ′

1(0) = 0, then φ1 is a solution of the IVP







φ′′ + x2φ+ λx2φ = 0, 0 < x < 1
φ(0) = 0
φ′(0) = 0.

But this IVP is subject to the existence and uniqueness theorem for initial value problems which tells us,
since φ ≡ 0 is a solution that φ1 must also be this constant zero solution. But that would rule φ1 out as an
eigenfunction, or alternatively we have already noted φ1(x) > 0 for 0 < x < 1, so this is not what happens.
It must be the case that φ′

1(0) > 0.
If φ′

1(0) 6= 1, then φ1/φ
′
1(0) is definitely a solution of (16) and also an eigenfunction. We have established

that there is a first eigenfunction φ1 which is non-vanishing, positive and is a solution of the initial value
problem (16) on the interval [0, 1]. This makes φ1 and consequently λ1 relatively easy to find in several
ways.

As a first approach we can go back and find the unique solution of (16) as a function of λ in terms of
a power series. This series will have coefficients in terms of λ. Shall we do that?

The ODE is φ′′ + (1 + λ)x2φ = 0, and we try

φ(x) =

∞
∑

j=0

ajx
j .

We note that

φ′(x) =
∞
∑

j=1

jajx
j−1

and

φ′′(x) + (1 + λ)x2φ(x) =

∞
∑

j=2

j(j − 1)ajx
j−2 +

∞
∑

j=0

(1 + λ)ajx
j+2 = 0.

After isolating the first few terms and shifting some indices we have

2a2 + 6a3x+
∞
∑

j=2

[(j + 2)(j + 1)aj+2 + (1 + λ)aj−2]x
j = 0.

Equating coefficients we see a2 = 0 = a3 and we have the recurrence relation

aj+2 = −(1 + λ)
1

(j + 2)(j + 1)
aj−2 for j = 2, 3, 4, . . . .

Shifting indices again

aj+4 = − 1 + λ

(j + 4)(j + 3)
aj for j = 0, 1, 2, 3, . . . .
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By the initial condition φ(0) = 0, we know a0 = 0, and by the recursion relation a4 = 0 = a8 = a12 = a4k
for k = 0, 1, 2, 3, . . ..

By the initial condition φ′(0) = 1, we get a1 = 1. The recursion relation then gives a5 = −(1+λ)a1/20
and

a4k+1 =
(−1)k(1 + λ)k

(4k + 1)4k(4k − 3)4(k + 1) · · · (5)(4) a1 =
(−1)k(1 + λ)k

4kk!
∏k

m=1[4(k −m) + 5]
.

The rest of the coefficients are zero, and

φ(x) = x+
∞
∑

j=1

(−1)k(1 + λ)k

4kk!
∏k

m=1[4(k −m) + 5]
x4k+1

= x+

∞
∑

j=1

βk(1 + λ)kx4k+1.

In particular, φ(1) as a function of λ is given by

ρ(λ) = 1 +
∞
∑

j=1

βk(1 + λ)k.

We may note something useful at this point based on the power series. Recall that βk is alternating with
sign (−1)k. If λ < −1 so that 1+λ < 0, then (1+λ) is also alternating with sign (−1)k. Thus, the product
is positive and ρ(λ) > 1. There can be no eigenvalues with ρ < −1. In fact ρ(−1) = 1 > 0, so there are no
eigenvalues for (14) with λ+ 1 ≤ 0. Every eigenvalue λ corresponds to a zero of X1 with

zj =
4
√
λ+ 1, j = 1, 2, 3, . . . .

Plotting a partial sum

1 +

10
∑

j=1

βk(1 + λ)k

for this function for −1 < λ < 45 we obtain the plot shown in Figure 2. A first positive root λ1 is indicated

Figure 2: Plot of ρ = φ1(1) as a function of λ from the power series for φ1.

around λ = 30 and a numerical root find algorithm indicates λ1
.
= 29.9333 giving

z1 =
4

√

λ1 + 1
.
= 2.35834

confirming the first value we found above.
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4 ODE solver approximation and other zeros

It should not be missed that the general situation, though we do not necessarily know the precise locations
of the zeros, can be guessed or predicted. Assuming the Sturm-Liouville problem (14) behaves like a regular
Sturm-Liouville problem, there is a sequence of eigenvalues

λ1
.
= 29.9333 < λ2 < λ3 < · · ·

with the j-th positive zero of X1 given by the formula

zj =
4

√

λj + 1.

I’m going to compute the value λ1
.
= 29.333 using a different method and indicate how to nicely

compute many more zeros. Mathematical software has very nice (adaptive fourth and fifth order Runge-
Kutta methods) implementations for solving initial value problems for ordinary differential equations. One
can count on much greater accuracy than when using partial sums for power series “by hand.”

It is also relatively easy to obtain an approximation for the solution of an IVP like (16) with the
numerical solution given as a function of λ. Figure 3 shows plots of the solutions on [0, 1] for various values
of λ. Applying a root find algorithm to the equation φ(1;λ) = 0 to determine λ1 results in an extremely

Figure 3: Plots of solutions φ = φ(x) of (16) for 0 ≤ x ≤ 1 and λ taking various values near λ1. These are
computed with an ordinary differential equations numerical “solver” for initial value problems. It is clear
the first eigenvalue occurs for λ somewhere between λ = 10 and λ = 40.

accurate value λ1
.
= 29.333 as we have computed before.

It is relatively easy to repeat this procedure looking for solutions with exactly one zero on (0, 1), that
is for the second Sturm-Liouville eigenfunction. A series of solutions of the initial value problem are again
shown on the left in Figure 4. Solving the same equation ρ(λ) = φ(1) = 0 for λ between λ = 130 and
λ = 160 gives the value λ2

.
= 138.53 and the second zero at z2 =

4
√
λ2 + 1

.
= 3.4369.

In order to show the relative power of the method, I’ve computed the sixteenth zero of X1. See Figure 5.
I suspect this sixteenth zero would be pretty difficult to calculate accurately using power series at t = 0
for X1 = X1(t) or at x = 0 for the solution of (16) with coefficients given as a function of λ.
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Figure 4: Plots of solutions φ = φ(x) of (16) for 0 ≤ x ≤ 1 and λ taking various values. The second
eigenvalue occurs with λ2

.
= 138.53

Figure 5: The sixteenth eigenfunction corresponding to λ16
.
= 9948.93 and the sixteenth zero of X1 at

z16 =
4
√
λ16

.
= 9.98746.
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