
Final Assignment (10):
Classical Mathematical Methods in Engineering

Due Thursday December 12, 2024

John McCuan

Problem 1 Assume f ∈ L
1(−L, L) and the Fourier series
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has partial sums converging to f in L
1(−L, L). Assume termwise integration holds
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holds pointwise for any function and series satisfying these conditions.

(a) Express

g(x) = f(x) sin

(

kπ

L
x

)

as a Fourier series in L
1(−L, L) satisfying the conditions required for the as-

sumption on termwise integration.

(b) Derive from termwise integration of the series for g obtained in part (a) a formula
for the coefficient bj , j = 1, 2, 3, . . ..

Problem 2 (Haberman 1.4.4) Assume heat conduction is modeled in a thin metal
rod by

ut = (kux)x on (0, ℓ)× (0,∞)

where k = k(x) depends on position. If both ends of the rod are modeled as insulated,
show the total heat energy in the rod must be constant (as a function of time).
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Problem 3 (Haberman 1.4.6) If heat conduction in a thin metal rod is modeled by
the forced 1-D heat equation with nonzero constant source term Q, and both ends
are modeled as insulated, prove there can be no equilibrium solution

U(x) = lim
tր∞

u(x, t).

Problem 4 Consider the initial/boundary value problem







ut = ∆u, (x, y, t) ∈ R× (0,∞)
u(x, y, 0) = u0, (x, y) ∈ R

u(x, y, t) = 0, (x, y, t) ∈ ∂R × (0,∞)

for the 2-D heat equation where R = (0, 4)× (0, 2) is a rectangular spatial domain in
R2 and

u0(x, y) = 2−max{|x− 2|, 2|y − 1|}.

(a) Plot the graph of u0 by hand.

(b) Solve the problem using separation of variables and Fourier series expansion.

(c) Animate the solution using mathematical software with the time t as an anima-
tion parameter.

Problem 5 Let Φ : R×(0,∞) → R denote the fundamental solution of the 1-D heat
equation. See Problem 8 and Problem 9 of Assignment 7.

Given u0 : R → R with u ∈ C0(R), the function

u(x, t) =

∫

ξ∈R

Φ(x− ξ, t) u0(ξ)

is called the spatial convolution of the fundamental solution with u0. Show that
this spatial convolution satisfies the initial value problem

{

ut = uxx on R× (0,∞)
u(x, 0) = u0(x), x ∈ R

for the heat equation on the whole real line.
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Problem 6 (length measures cannot measure all sets) Complete the steps outlined
below1 in showing it is impossible to have a translation invariant length measure on
the interval [0, 1) with domain the collection ℘([0, 1)) of all subsets of [0, 1).

The argument is by contradiction. Assume by way of contradiction

µ : ℘([0, 1)) → [0, 1] (1)

is a function having the following properties:

(i) (countable additivity) If {Aj}
∞
j=1 ⊂ ℘([0, 1)) is a countable collection of disjoint

sets, i.e., Ai ∩ Aj = φ if i 6= j, then

µ

(

∞
⋃

j=1

Aj

)

=

∞
∑

j=1

µ(Aj).

(L) If I is any interval in [0, 1), meaning I has one of the following forms:

(a, b) = {x : a < x < b} for some a, b ∈ [0, 1) with a < b,

[a, b) = {x : a ≤ x < b} for some a, b ∈ [0, 1) with a < b,

(a, b] = {x : a < x ≤ b} for some a, b ∈ [0, 1) with a < b, or

[a, b] = {x : a ≤ x ≤ b} for some a, b ∈ [0, 1) with a ≤ b,

then µ(I) = length(I) = b− a.

(T) If A ⊂ [0, 1) and t ∈ R and {x+ t : x ∈ A} ⊂ [0, 1), then

µ({x+ t : x ∈ A}) = µ(A).

The property (i) of countable additivity is essentially what makes the function µ a
measure.2 A measure satisfying (L) is said to be a length measure. A measure
satisfying (T) is said to be translation invariant.

1This material is from the book Real Analysis by Halsey Royden (1928–1923).
2Technically, the real definition of a measure is somewhat more complicated. First of all the

domain of a measure is usually taken to be an arbitrary sigma algebra of subsets in ℘([0, 1)],
or in ℘(X) where X is the set whose subsets are being measured. So for a proper definition, one
should define the notion of a sigma algebra first. In our case, we are using ℘([0, 1)) as the sigma
algebra, and the power set of any set is always a sigma algebra. Also, in general if µ is allowed to
take non-negative extended real values in [0,∞], then the condition (ii) µ(φ) = 0 is usually included.
If you know some set has finite measure, you know µ takes non-negative values, and you know µ is
countably additive, then you can prove µ(φ) = 0.
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(a) An equivalence relation on a set S is any subset R of S × S for which the
following hold

(i) (x, x) ∈ R for all x ∈ S,

(ii) If (x, y) ∈ R, then (y, x) ∈ R, and

(iii) If (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Property (i) is called the reflexive property and is usually expressed by writing
x ∼ x, where the equivalence relation is informally represented by the notation
“∼.” Similarly, an equivalence relation is said to be symmetric if (ii) holds,
and this is informally expressed by writing

x ∼ y =⇒ y ∼ x.

The third property is called the transitive property:

x ∼ y and y ∼ z =⇒ x ∼ z.

Most of the time when you use the symbol “=” in mathematics, it is denoting
some equivalence relation.

Show that any time one has an equivalence relation “∼” on a set S, then the
collection

P =
{

{y ∈ S : y ∼ x} : x ∈ S
}

is a partition of S. Each set Ax = {y ∈ S : y ∼ x} is called the equivalence
class of x ∈ S, and what you need to show is that either two equivalence classes
Ax and Aw are disjoint, i.e., Ax ∩ Aw = φ, or identical, i.e., Ax = Aw. Hint:
Remember that in order to show two sets are equal, you need to show each is a
subset of the other.

(b) (rational equivalence) Let Q denote the rational numbers

Q =
{m

n
: n ∈ N = {1, 2, 3, . . .} and m ∈ Z = {0,±1,±2,±3, . . .}

}

.

Show x ∼Q y if x− y ∈ Q defines an equivalence relation on [0, 1).

As a consequence of parts (b) and (c) above, the equivalence classes

{

Ax = {y ∈ [0, 1) : y ∼Q x} : x ∈ [0, 1)
}

,
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where “∼Q” represents rational equivalence, are a partition of [0, 1).
Of course, it may be the case that Ax = Ay for elements x, y ∈ [0, 1) with x 6= y.

In the application below, however, we use a particular index set J ⊂ [0, 1) for which

{

Ax : x ∈ [0, 1)
}

= {Ax : x ∈ J}

and Ax = Ay for x, y ∈ J implies x = y. That is to say, the set J ⊂ [0, 1) contains
exactly one element from each equivalence class.3

(c) (mod 1 addition) The function m : [0, 1)× [0, 1) → [0, 1) given by

m(x, y) =

{

x+ y, if x+ y < 1
x+ y − 1, if x+ y ≥ 1

is called mod 1 addition. Recall that the rational numbers Q are countable.
This means there is a bijection r : N → Q. Let us denote the image r(j) of each
natural number j under this bijection is denoted by rj so that

Q = {rj}
∞
j=1.

You should now think: r1 is the first rational number, r2 is the second rational
number, and so on.

For each j = 1, 2, 3, . . ., consider the “rj shuffle” of J defined by

Ej = {m(x, rj) : x ∈ J}.

(i) Draw a picture of the set Ej. (You’ll have to be creative about how to
illustrate/draw the set J because no one knows what J actually looks
like.)

(ii) Use translation invariance to show µ(Ei) = µ(Ej) for every i, j ∈ N.

(iii) Show Ei ∩ Ej = φ if i 6= j.

(iv) Show
∞
⋃

j=1

Ej = [0, 1).

Hint: If x ∈ [0, 1), there is some x0 ∈ J for which Ax0
= Ax. That is,

x− x0 ∈ Q.

3Technically, the existence of this set J follows from an application of the axiom of choice.
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(d) As a consequence of (c)(iii) and (c)(iv) the collection {Ej}
∞
j=1 is a countable

partition of [0, 1). Also, by (c)(ii) each set Ej has the same measure. Use
the countable additivity from your definition of (abstract) measure to obtain
a contradiction showing it is impossible to measure all subsets of [0, 1) with a
length measure.

Note: The existence of non-measurable sets may seem like a mathematical curiosity,
and from the point of view of applications/engineering it may well be. One can argue
that most sets used in applications are measurable. On the other hand, the existence
of non-measurable sets has some grave consequences for the Euclidean spaces Rn

which are used pretty much universally in the mathematical modeling of engineering.
One such consequence is called the Banach-Tarski paradox which applies to R3:
There exist five geometrically congruent sets A1, A2, A3, A4, and A5 and five rigid
motions ρ1, ρ2, ρ3, ρ4 and ρ5 with the following properties:

(i) Ai ∩ Aj = φ, that is A1, A2, . . . , A5 are disjoint sets.

(ii) The union of A1, A2, . . . , A5 is a unit ball, that is for example,

5
⋃

j=1

Aj = B1(0) = {(x, y, z) : x2 + y2 + z2 < 1}.

(ii) The sets A1, A2, . . . , A5 can be rigidly moved around to form two unit balls:

5
⋃

j=1

ρj(Aj) = B1(0) ∪ B1(2, 0, 0)

= {(x, y, z) : x2 + y2 + z2 < 1} ∪ {(x, y, z) : (x− 2)2 + y2 + z2 < 1}.

A rigid motion ρ is a function ρ : R3 → R3 which is a composition of a rotation
and a translation. One way to say two pices Ai and Aj are congruent is to say there
exists a rigid motion with

ρ(Ai){ρ(x) : x ∈ Ai} = Aj.
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