Final Assignment (10):
Classical Mathematical Methods in Engineering
Due Thursday December 12, 2024

John McCuan

Problem 1 Assume f € £'(—L, L) and the Fourier series

s S0 n (1) + S0 (3

has partial sums converging to f in £'(—L, L). Assume termwise integration holds
so that

/(_L,m)f ao(x + L) +Z—sm< )+2Lb{ (‘M:)s)—(_l)i]

holds pointwise for any function and series satisfying these conditions.
(a) Express
k
o) = f(o) sin (7 <)

as a Fourier series in £'(—L, L) satisfying the conditions required for the as-
sumption on termwise integration.

(b) Derive from termwise integration of the series for g obtained in part (a) a formula
for the coefficient b;, 7 =1,2,3,....

Problem 2 (Haberman 1.4.4) Assume heat conduction is modeled in a thin metal
rod by
ur = (kug),  on (0,£4) x (0,00)

where k = k(x) depends on position. If both ends of the rod are modeled as insulated,
show the total heat energy in the rod must be constant (as a function of time).
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Problem 3 (Haberman 1.4.6) If heat conduction in a thin metal rod is modeled by
the forced 1-D heat equation with nonzero constant source term (), and both ends
are modeled as insulated, prove there can be no equilibrium solution

U(x) = lim u(z,t).

t oo
Problem 4 Consider the initial/boundary value problem

uy = Au, (x,y,t) € R x (0,00)
u(z,y,0) =ug, (r,y) €R
u(z,y,t) =0, (x,y,t) € IR x (0,00)

for the 2-D heat equation where R = (0,4) x (0,2) is a rectangular spatial domain in
R? and
uo(x,y) =2- Il’l&X{‘SL’ - 2‘7 2|y - 1|}

(a) Plot the graph of ug by hand.
(b) Solve the problem using separation of variables and Fourier series expansion.

(c) Animate the solution using mathematical software with the time ¢ as an anima-
tion parameter.

Problem 5 Let @ : R x (0, 00) — R denote the fundamental solution of the 1-D heat
equation. See Problem 8 and Problem 9 of Assignment 7.
Given ug : R — R with u € C°(R), the function

w(z, 1) = /5 &) wle)

is called the spatial convolution of the fundamental solution with wug. Show that
this spatial convolution satisfies the initial value problem

Up = Ugy on R x (0,00)
u(z,0) =up(z), x€R

for the heat equation on the whole real line.



Problem 6 (length measures cannot measure all sets) Complete the steps outlined
below! in showing it is impossible to have a translation invariant length measure on
the interval [0, 1) with domain the collection §2([0, 1)) of all subsets of [0, 1).

The argument is by contradiction. Assume by way of contradiction

g §2([0,1)) — [0, 1] (1)
is a function having the following properties:

(i) (countable additivity) If {A;}32, C §2([0,1)) is a countable collection of disjoint
sets, i.e., A, NA; = ¢if i # j, then

It (U Aj) = ZM(AJ')~

(L) If I is any interval in [0, 1), meaning [ has one of the following forms:

(a,b) ={x:a<x <b} forsomea,be|0,1)with a <b,
la,b) ={z:a <z <b} forsomea,be[0,1)witha<b,
(a,b) ={x:a <z <b} forsomea,be|0,1)witha<bd,or
[a,b] ={z:a <z <b} forsomea,be|0,1)with a <b,

then u(l) = length(l) = b — a.
(T) IfAc[0,])andteRand {z+t:2x € A} C[0,1), then
p{z+t:x e A}) = p(A).

The property (i) of countable additivity is essentially what makes the function u a
measure.? A measure satisfying (L) is said to be a length measure. A measure
satisfying (T) is said to be translation invariant.

!This material is from the book Real Analysis by Halsey Royden (1928-1923).

2Technically, the real definition of a measure is somewhat more complicated. First of all the
domain of a measure is usually taken to be an arbitrary sigma algebra of subsets in @([0, 1)],
or in p(X ) where X is the set whose subsets are being measured. So for a proper definition, one
should define the notion of a sigma algebra first. In our case, we are using §7([0,1)) as the sigma
algebra, and the power set of any set is always a sigma algebra. Also, in general if p is allowed to
take non-negative extended real values in [0, o], then the condition (ii) p(¢) = 0 is usually included.
If you know some set has finite measure, you know p takes non-negative values, and you know u is
countably additive, then you can prove u(¢) = 0.



(a) An equivalence relation on a set S is any subset R of S x S for which the
following hold
(i) (z,z) e Rforallz €S,
(ii) If (x,y) € R, then (y,z) € R, and
(iii) If (z,y) € R and (y, 2) € R, then (x,z2) € R.
Property (i) is called the reflexive property and is usually expressed by writing
x ~ x, where the equivalence relation is informally represented by the notation

“~.” Similarly, an equivalence relation is said to be symmetric if (ii) holds,
and this is informally expressed by writing

T~y = Y~ T
The third property is called the transitive property:

r~y and y~z - T~z
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Most of the time when you use the symbol “=" in mathematics, it is denoting

some equivalence relation.

Show that any time one has an equivalence relation “~” on a set S, then the
collection

P={{yeS:y~az}:zeS}

is a partition of S. Each set A, = {y € S:y ~ z} is called the equivalence
class of z € S, and what you need to show is that either two equivalence classes
A, and A, are disjoint, i.e., A, N A, = ¢, or identical, i.e., A, = A,. Hint:
Remember that in order to show two sets are equal, you need to show each is a
subset of the other.

(b) (rational equivalence) Let @ denote the rational numbers
Q= {T ‘neN={1,2,3,. }andmeZ= {O,jzl,j:2,j:3,...}}.
n

Show = ~g y if x —y € Q defines an equivalence relation on [0, 1).

As a consequence of parts (b) and (c) above, the equivalence classes
{Ax ={yel0,l):y~qga}:zc [0,1)},
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where “~q” represents rational equivalence, are a partition of [0, 1).
Of course, it may be the case that A, = A, for elements z,y € [0,1) with = # y.
In the application below, however, we use a particular index set J C [0, 1) for which

{A, 2 €(0,1)} ={A,: 2 € J}

and A, = A, for z,y € J implies x = y. That is to say, the set J C [0,1) contains
exactly one element from each equivalence class.?

(c) (mod 1 addition) The function m : [0,1) x [0,1) — [0, 1) given by

B r+y, fet+y<l
mmwy_{x+y—L if o 4+y>1

is called mod 1 addition. Recall that the rational numbers Q are countable.
This means there is a bijection 7 : N — Q. Let us denote the image r(j) of each
natural number j under this bijection is denoted by 7; so that

Q= {Tj}éil-

You should now think: rq is the first rational number, r, is the second rational
number, and so on.

For each j =1,2,3,..., consider the “r; shuffle” of J defined by
E; ={m(xz,r;):x € J}.

(i) Draw a picture of the set E;. (You'll have to be creative about how to

illustrate/draw the set J because no one knows what J actually looks
like.)

(ii) Use translation invariance to show u(E;) = p(E;) for every i,j € N.
(iv) Show

G@:pn

Hint: If 2 € [0,1), there is some zy € J for which A,, = A,. That is,
r— Xy € @

3Technically, the existence of this set J follows from an application of the axiom of choice.



(d) As a consequence of (c)(iii) and (c)(iv) the collection {F;}22, is a countable
partition of [0,1). Also, by (c)(ii) each set E; has the same measure. Use
the countable additivity from your definition of (abstract) measure to obtain
a contradiction showing it is impossible to measure all subsets of [0,1) with a
length measure.

Note: The existence of non-measurable sets may seem like a mathematical curiosity,
and from the point of view of applications/engineering it may well be. One can argue
that most sets used in applications are measurable. On the other hand, the existence
of non-measurable sets has some grave consequences for the Euclidean spaces R"
which are used pretty much universally in the mathematical modeling of engineering.
One such consequence is called the Banach-Tarski paradox which applies to R3:
There exist five geometrically congruent sets Ay, As, Az, Ay, and As and five rigid
motions p1, p2, p3, p4 and p; with the following properties:

(i) AinNA; = ¢, that is Ay, Ay, ..., A5 are disjoint sets.

(ii) The union of Ay, As, ..., A5 is a unit ball, that is for example,

Aj = B1(0) = {(z,y,2) : 2* +y* + 2* < 1}.
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(ii) The sets Ay, A, ..., A5 can be rigidly moved around to form two unit balls:

| pi(4)) = B1(0) U By (2,0,0)

j=1
={(z,y,2) 2 + ¥+ 2 < 1JU{(z,9,2) : (2 = 2)° +y* + 27 < 1}.

A rigid motion p is a function p : R® — R3 which is a composition of a rotation
and a translation. One way to say two pices A; and A; are congruent is to say there
exists a rigid motion with

p(Ai){p(x) 1 x € A;} = A;.



