
Assignment 7: Review of

Elliptic and Parabolic Equations

Pace: Thursday October 31, 2024, Due Tuesday November 5, 2024

John McCuan

Problem 1 (Green’s theorem; Haberman Exercise 1.5.7)

(a) State Green’s theorem. (Look it up and be sure you understand what it says if
necessary.)

(b) Derive the heat equation in two dimensions using Green’s theorem. Hint: Rotate
your vector fields on ∂R by an angle π/2.

Problem 2 (1-D heat equation, Haberman 2.4.1)

(a) Solve the initial/boundary value problem for the 1-D heat equation















ut = uxx on (0, π)× (0,∞)
ux(0, t) = 0 = ux(π, t), t > 0

u(x, 0) = sin x, 0 < x < π.

(b) Use mathematical software to plot the graph of your solution.

(c) Use mathematical software to produce a time animation of your solution.
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Problem 3 (divergence) Let U be an open subset of R2 and assume v : U → R
2 is

a vector field. Assume also that the coordinate functions v1 and v2 of v = (v1, v2)
have continuous first partial derivatives on U . Take p = (p1, p2) ∈ U and consider for
ǫ, δ > 0 a rectangular domain

R = (p1 − ǫ, p1 + ǫ)× (p2 − δ, p2 + δ) = {x ∈ R
2 : |x1 − p1| < ǫ and |x2 − p2| < δ}.

Finally, assume the closure

R = [p1 − ǫ, p1 + ǫ]× [p2 − δ, p2 + δ] = {x ∈ R
2 : |x1 − p1| ≤ ǫ and |x2 − p2| ≤ δ}

satisfies R ⊂ U .

(a) Express the boundary integral

∫

∂R

v · n =
4

∑

j=1

Ij

where n is the outward unit normal field on ∂R as the sum of four elementary
integrals of the form

I =

∫ b

a

f(t) dt

each corresponding to a single side of ∂R. Be careful to express the integrals
Ij for j = 1, 2, 3, 4 precisely and in full detail so that the dependence of the
arguments of v1 and v2 on the variable t and the lengths ǫ and δ is clearly
indicated.

(b) Combine the integrals from part (b) above in pairs corresponding to opposite
sides, and apply the mean value theorem to the resulting integrands. Hint: If
the segment

{(a, y) : y1 ≤ y ≤ y2}
is a subset of U , then by the mean value theorem one can write

v1(a, y2)− v1(a, y1) = (y2 − y1)
∂v1
∂y

(a, y∗)

for some y∗ with y1 < y∗ < y2.

(c) Use your expressions for part (b) to compute the following limits
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(i)

lim
ǫ→0

∫

∂R

v · n.

(ii)

lim
δ→0

∫

∂R

v · n.

(iii)

lim
ǫ→0

1

length(∂R)

∫

∂R

v · n.

(iv)

lim
δ→0

1

length(∂R)

∫

∂R

v · n.

(d) The mean value theorem for integrals states that if f is continuous on the closed
interval [a, b], then there is some x∗∗ ∈ (a, b) for which

1

b− a

∫ b

a

f(x) dx = f(x∗∗).

Use this result along with your expression from part (b) above to write

1

area(R)

∫

∂R

v · n

as a sum of two terms in which no integrals appear.

(e) Compute the limits

(i)

lim
ǫ→0

1

area(R)

∫

∂R

v · n.

(ii)

lim
δ→0

1

area(R)

∫

∂R

v · n.

(iii)

div v(p) = lim
ǫ,δ→0

1

area(R)

∫

∂R

v · n.
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Problem 4 (uniqueness for solutions of the heat equation) Let u and v be solutions
of the inital/boundary value problem







ut = ∆u+ f, (x, t) ∈ U × (0,∞)
u(x, 0) = u0(x), x ∈ U
u(x, t) = u0(x), x ∈ ∂U, t > 0

on the open, bounded, connected spatial domain U ⊂ R
n with smooth boundary ∂U

and with u0 ∈ C0(U). Complete the following to show u ≡ v.

(a) Consider the difference w = u − v. Find an initial/boundary value problem
satisfied for w.

(b) Consider the square

A(t) =

∫

U

w2

of the L2 norm of w, and show A′(t) ≤ 0. Hint: Differentiate under the integral
sign, use the equation, and apply the divergence theorem. Hint hint: Show

div(wDw) = |Dw|2 + w∆w.

(c) Conclude w ≡ 0. Hint: The IVP A′ = 0, A(0) = 0 has a unique solution.

Problem 5 (mollification) In Assignment 3 Problem 7 the mollification of a function
u ∈ L1

loc(R
n) is considered. The objective of this problem is to consider a little more

carefully the mollification of a function defined on a bounded open set U ⊂ R
n for

application to harmonic functions.

Let u ∈ C0(U) and recall the mollification formula

u ∗ φδ(p) =

∫

x∈Rn

u(x) φδ(p− x). (1)

which is intended to associate with u some other smooth function, or more properly a
family of smooth functions indexed by a positive parameter δ. Here we take explicitly

φδ(x) =
1

δn
φ1

(x

δ

)

and

φ1(x) =

{

ce
− 1

1−|x|2 , |x| < 1
0, |x| ≥ 1

4



where the positive constant c is chosen so that
∫

Rn φ1 =
∫

Rn φδ = 1.
Finally, given p ∈ U set

R = dist(p, ∂U) = max
x∈∂U

|x− p|

and
UR = {x ∈ U : dist(x, ∂U) < R}.

(a) Explain why the mollification formula (1) does not determine a well-defined value
if δ > R.

(b) Give an example showing the mollification formula (1) may not determine a
well-defined finite value if δ = R.

(c) Explain why the mollification formula (1) can and does make sense for δ < R.

(d) Show UR is an open set and u ∗ φδ ∈ C∞(UR) for δ < R. Hint(s): Recall that

C∞(UR) =

∞
⋂

k=1

Ck(UR).

An easy way to show u ∗ φδ ∈ Ck(UR) is to show every derivative

Dβ(u ∗ φδ) for |β| = k + 1

of order k + 1 is well-defined.
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Problem 6 (regularity for solutions of Laplace’s equation) Let U be an open subset
of R2. Complete the following steps to show that if u ∈ C2(U) satisfies ∆u = 0, then
u ∈ C∞(U).

(a) Fix p ∈ U and take δ < dist(p, ∂U). Show that for some ǫ > 0 the mollification
u ∗ φδ is well-defined and satisfies

u ∗ φδ ∈ C∞(Bǫ(p)).

Pay careful attention to part (c) of Problem 5 above.

(b) Write down the formula for u ∗ φδ(x) for x ∈ Bǫ(p) and show

u ∗ φδ(x) =

∫ δ

0

(
∫

q∈∂Br(x)

u(q) φδ(x− q)

)

dr

Hint: Consider the integral over Bδ(x) as a limit of Riemann sums with parti-
tion pieces that also partition spherical shells of radius (approximately) rj and
thickness rj+1 − rj. This is sometimes called integration using generalized
spherical coordinates.

(c) Show that for q ∈ ∂Br(x) the value

φδ(x− q) =
1

δn
φ1

(

x− q

δ

)

is independent of q but only depends on r. Call this value µ(r).

(d) Show

u ∗ φδ(x) = nωn u(x)

∫ δ

0

rn−1µ(r) dr

Hint: Use the mean value property.

(e) Show

nωn

∫ δ

0

rn−1mu(r) dr = 1

Hint(s): Express nωnr
n−1µ(r) as an integral over ∂Br(x), and change variables

back to rectangular coordinates from generalized spherical coordinates.

(f) Explain why this implies u ∈ C∞(U).
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Problem 7 (uniqueness of the Dirichlet problem for Poisson’s equation) In Prob-
lem 2 and again in Problem 4 of Assignment 6 proofs of uniqueness of solutions for
the Dirichlet boundary value problem

{

∆u = f on U
u∣
∣

∂U

= g (2)

are given/outlined. Recall that the functions f and g were assumed continuous on
their respective domains. Were these assumptions of continuity used in the proofs? If
so, explain where the proof breaks down. If not, state a stronger uniqueness assertion
which applies to some class of disontinuous functions.

Problem 8 (fundamental solution for the 1-D heat equation; Haberman 10.4) We
have considered special solutions of the heat equation having the form

u(x, t) = e−j2π2t/L2

cos

(

jπ

L
x

)

and u(x, t) = e−j2π2t/L2

sin

(

jπ

L
x

)

on the interval [0, L]. These are separated variables solutions. They can, of course,
also be considered as solutions on all of the spatial domain R, but that consideration
is not so interesting because they are spatially periodic. There is another important
solution of the heat equation to know about and remember.

The function Φ : R× (0,∞) → R given by

Φ(x, t) =
1√
4πt

e−
x
2

4t

is called the fundamental solution of the one-dimensional heat equation. Notice
that the fundamental solution does not have the form of a separated variables solution.

(a) Verify that Φ satisfies ut = uxx for (x, t) ∈ R× (0,∞).

(b) Use L’Hopital’s rule to determine

lim
tց0

Φ(x, t).

(c) Make an animation of the spatial graph of the fundamental solution Φ with
animation parameter t.
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Problem 9 (fundamental solution for the 1-D heat equation; Haberman 10.4) Cal-
culate the spatial L1 norm

I(t) =

∫

x∈R

Φ(x, t)

of the fundamental solution. Hint(s): Note that I(t) = 2J(t) where

J(t) =

∫ ∞

0

Φ(x, t) dx.

Calculate J(t)2. Use y as a spatial variable of integration in one of the factors J(t).
Write what you get as an iterated integral and then as an integral of a function of
two variables over the first quadrant. Use polar coordinates.

Problem 10 (fundamental solution for the 1-D heat equation; Haberman 10.4)

(a) How could you modify Φ so that it satisfies ut = kuxx for non-unitary conductiv-
ity? Hint(s): Consider scaling in the spatial variable and/or the time variable.
and time. See how Haberman defines as the fundamental solution.

(b) How can you modify the one-dimensional fundamental solution of the heat equa-
tion to obtain the fundamental solution of the heat equation Φ : Rn×(0,∞) → R

on (all of) Rn?
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