Assignment 6: Laplace’s Equation

Pace: Thursday October 17, 2024, Due Tuesday October 22, 2024

John McCuan

Problem 1 (weak maximum principle) Let U be a bounded open subset of R", and
let u € C*(U) N C°(U) be a harmonic function, i.e., a solution of Laplace’s equation

Ay = — =0.

Simply by the continuity of v on the closure of the bounded set U, the number

M = maxu
xeU

is a well-defined finite real number. Similarly, OU is a closed and bounded set on
which u is continuous, so the maximum

max u
xeoU

of u on QU is also a well-defined finite number.
The weak maximum principle asserts that

M = maxu, (1)

xeoU

that is, the global maximum of a harmonic function u is taken on the boundary. In
particular, there is some p € OU for which u(p) = M.
Assume by way of contradiction that there is some point q € U with

u(q) > m = maxu, (2)

and complete the following steps to prove the weak maximum principle:
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(a) For € > 0, consider v : R — R by

v(x) = u(q) — ¢lx — q|*.

Show that if € is small enough, then

v(x) >m for all x € U.

(b) Fix e satisfying the condition of part (a). For ¢ > 0 consider w : R" — R by
w(x) = v(x) + 0.
Show that for some § > 0, the function w satisfies the following:
(i) w(x) > u(x) for x € U,
(ii) w(x) > m for all x € U.
(iii) w(y) = u(y) for some y € U.
Hint: Consider the number a = max{u(x) — v(x) : x € U}.
(c) Show that it follows from conditions (i) and (ii) of part (b) above that Au(y) <

0. Hint(s): You may want to consider the low dimensional cases n = 1 and
n = 2 first. Show for each j =1,2,....n

0*u 0w
i < 2 (v).
oz, (y) < o, (y)

Compute Aw.
(d) Note that what you have shown in part (c) constitutes a contradiction and

conclude there is no point q € U for which (2) holds. Explain why this implies
the weak maximum principle (1).



Problem 2 (uniqueness of solutions for Poisson’s equation) Assume U is a bounded
open subset of R™ and f and ¢ are functions satisfying

(i) f e C%U) and
(ii) g € C°(OU).

Given u,v € C*(U) N C°(JU) satisfing the Dirichlet boundary value problem(s)

Au=f, xelU
u‘ =g xedU (3)
ouU
and
Av=f xeU
U‘ =g XE@U,
oU

use the weak maximum principle of Problem 1 above to show u = v. Hint: Find the
boundary value problem satisfied by w = u — v.

Problem 3 (Laplace’s equation and the heat equation) Let U = [0, 1] x [0, 1] be the
unit square in the first quadrant, and let uy = ug(x, y) be any function satisfying

(i) wo(x,y) = a? — y?* for (x,y) € AU,
(ii) Ug € C()(U)
(a) Solve the initial /boundary value problem

Up = Ugy + Uy, (z,y,t) € U x (0,00)
u(x,y,t) = 2> —y? (x,y) €U, t>0
U([L’,y,O) = UO(zay)a (xay) € U.

Hint: Solve for v(z,y) = u(x,y) — 22 + y* using a Fourier basis involving the
functions wjy, = sin(jnzx) sin(kmry) for j,k=1,2,3,....

(b) Using your solution from part (a) compute

Jim u(z, y,t).



Problem 4 (Haberman 2.5.12) In Problem 2 above the weak maximum principle is
used to show uniqueness of solutions for the Dirichlet boundary value problem for
Poisson’s equation (3). Complete the following steps to give a second proof of this
result.

(a) Use the coordinate expression

n
ov;
diVV = a—j
j=1 9%
for the divergence of a vector field v . = (vy,vs,...,v,) defined on a region

U C R" to derive the product formula
div(pv) = Do - v + ¢ divv

for the scaled field ¢v where ¢ : U/ — R is a scalar function.

/ wAw.
u

Hint(s): Use part (a) and remember Aw = div Dw.

(b) Obtain an identity for

(c) Prove the boundary value problem

Au=f onlU
o - .

ou

for Poisson’s equation has a unique solution. Hint(s): Note that your identity
in (b) holds for any function. Take w = u — v where u and v are two solutions

of (4).



Problem 5 (mean value property) Consider

1
f(r) = 2—/ u
mr aBT(P)

where B,(p) = {x € R? : |x —p| < r} and u : U — R is a solution of Laplace’s
equation with B,(p) C U C R%

(a) Compute f'(r) and show f’(r) = 0. Hint(s): Change variables so that you're
integrating on the boundary of a fixed ball of radius 1. Differentiate under the
integral sign, and use the divergence theorem.

(b) Use continuity to conclude

1
u(p) = C— u.
r aBr(p)

(c) (Bonus) Show

1
ap) == [
r By (p)

Hint(s): Parameterize B,(p)\{(0,0)} on the cylinder S' x (0,7) where S! =
{(x,y) : * +y? = 1} is the unit circle. Use Fubini’s theorem /iterated integrals
on the cylinder and part (b) to replace the value of the inner integral on each
circle.

Problem 6 (stong maximum principle) Consider the assertion (1) of the weak max-
imum principle. Note that while this does say there exists some p € OU with

u(p) =M = I)?Eaﬁxu(x)

it does not rule out the possibility that there exists some q € U with

u(q) = M = maxu(x). (5)

xeU

In fact this can happen, for example, if u = ¢ is constant. The strong maximum
principle says this is essentially the only way the equality in (5) is possible:



Theorem 1 (E. Hopf strong maximum principle) Under the assumptions of the weak
maximum principle, namely if U is a bounded, open, and connected subset of R"
and v € C*(U) N C°(U) is harmonic, then either

u(q) < M = maxu(x) forall x e U
xeU

or u = c is constant.

Assume (5) holds for some q € U, and complete the following steps to prove the
strong maximum priciple using the mean value property of Problem 7 part (b):

(a) Show u(x) = u(q) for x € 0B,(q) whenever B,.(q) C U. Hint(s): Assume by
way of contradition that u(p) < u(q) for some p € 9B,.(q). Use continuity to

show
/ u < u(q).
aBT(Q)

(This contradicts the mean value property.)

Use the following definition of what it means for U to be connected:

Definition 1 (connected) An open set U C R" is connected if given any two
points q and x in U, there exists a continuous function « : [0,1] — U with
a(0) = q and a(1) = x. The function « is called a path connecting q to x in
U.

(b) Show max{t € [0,1] : u(a(7)) = u(q) for 0 <7 <t} = 1.

(c) Explain how the steps (a) and (b) above constitute a proof of the strong maxi-
mum principle.

Problem 7 (Laplace’s equation) Find all separated variables solutions u(zx,y) =
A(z)B(y) of the boundary value problem

Au =0, (x,y) € (0, L) x (0, M)
{ u(z,0) =0=wu(x, M), x€(0,L)

where L, M > 0.



Problem 8 (Homogeneous boundary conditions on a rectangle)

(a) Solve the boundary value problem for Laplace’s equation

Au =0, (x,y) € (0,2) x (0,7)
uw(z,0) =0=u(x,7), z€(0,2)
u(0,y) =0, y e (0,m)
u(2,y) = sinvy, y € (0,7).

(b) Use mathematical software to plot your solution.

Problem 9 (Haberman 2.5.1) Let R = (0,L) x (0, M) be a fixed rectangle in the
plane modeling a heat conducting plate. Solve the boundary value problem for
Laplace’s equation (equilibrium solution of the heat equation):

Au =0, (x,y) € R
uw(z,0)=Lr—2% 0<xz<L
u(z, M) =0, O<z<L (6)
u(0,y) =0, O<y<M
u(L,y) =0, 0<y< M.

Hint: Initially set aside the boundary condition associated with y = 0 and find all
separated variables solutions u(z,y) = A(z)B(y). Then use a superposition of these
solutions.

Problem 10 (Laplace’s equation in a strip, Haberman 2.5.15) Solve the boundary
value problem for Laplace’s equation

Au =10 on (0, L) x (0, 00)
u(0,y) =0=wu(L,y), y>0
u(z,0) = g(z), O<z<L



