
Assignment 5: Laplace’s Equation
(mean value property and maximum principle)

Due Tuesday November 9, 2021

John McCuan

October 2, 2021

Problem 1 (Laplace’s equation in a strip, Haberman 2.5.15) Solve the boundary
value problem for Laplace’s equation







∆u = 0 on (0, L)× (0,∞)
u(0, y) = 0 = u(L, y), y > 0
ux(x, 0) = g(x), 0 < x < L

Problem 2 (mean value property) Consider

f(r) =
1

2πr

∫

∂Br(p)

u

where Br(p) = {x ∈ R
2 : |x − p| < r} and u : U → R is a solution of Laplace’s

equation with Br(p) ⊂ U ⊂ R
2.

(a) Compute f ′(r) and show f ′(r) = 0. Hint(s): Change variables so that you’re
integrating on the boundary of a fixed ball of radius 1. Differentiate under the
integral sign, and use the divergence theorem.

(b) Use continuity to conclude

u(p) =
1

2πr

∫

∂Br(p)

u.

(c) (bonus) Show

u(p) =
1

πr2

∫

Br(p)

u.
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Problem 3 (maximum principle, Haberman 2.5.13) Show that if U is an open,
bounded, and connected domain (in R

n) and u : U → R satisfies ∆u = 0, then

u(p) > min{u(x) : x ∈ U} for all p ∈ U

unless u is constant. (Connected means U cannot be written as the disjoint union
of two nonempty open sets.)

Problem 4 (transport of mass, Haberman 2.5.17-18) If mass determined by a density
ρ = ρ(x, t) is modeled by the transport of mass by a velocity v, and the mass remains
constant in space and time, then show

divv = 0.

Problem 5 (Fourier series, Haberman Chapter 3, sections 3.1-3.3)

(a) Find the Fourier sine series of the constant function f(x) = 1 on the interval of
interest (0, L).

(i) Describe the convergence of the series expansion from part (a).

(ii) Take L = 1, and if Gibb’s phenomenon is present, verify it numerically.

(b) Find the Fourier cosine series of the constant function f(x) = x on the interval
of interest (0, L).

(i) Describe the convergence of the series expansion from part (b).

(ii) Take L = 1, and if Gibb’s phenomenon is present, verify it numerically.

(c) Find the full Fourier (sine and cosine) series of the constant function f(x) = x2

on the interval of interest (0, L).

(i) Describe the convergence of the series expansion from part (c).

(ii) Take L = 2, and if Gibb’s phenomenon is present, verify it numerically.
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Problem 6 (Fourier series, Haberman Chapter 3, sections 3.1-3.3) Find the Fourier
sine series for the constant function f(x) = 1 on the interval (of interest) (0, π).

(a) Evaluate your series at mπ for m ∈ {0,±1,±2, . . .}. What is the relation between
this evaluated value and the values of the constant function?

(b) Find the maximum value of the partial sum

f(x) =
4

π

N
∑

j=0

1

2j + 1
sin[(2j + 1)x].

Hint(s): Differentiate, and try to solve f ′(x) = 0. Use induction to prove the
trigonometric identity

N
∑

j=0

cos[(2j + 1)x] =
sin[2(N + 1)x]

2 sin x
.

Note that 2(N + 1)x = (2N + 3)x− x. Also,

1

2j + 1
sin[(2j + 1)x] =

∫ x

0

cos[(2j + 1)ξ] dξ.

The answer is

h(N) =
4

π

∫ π/(2N+1)

0

sin[2(N + 1)ξ]

2 sin ξ
dξ. (1)

(c) Approximate the limiting value

δ = lim
N→∞

h(N).

of the expression in (1) as N tends to infinity.

(d) The value (δ − 1)/1 is called the Wilbraham-Gibbs constant. Explain the signifi-
cance of this ratio as “overshoot.”
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Problem 7 (Calculus of variations, Troutman 1.1.3) Assume a boat maintains a
relative velocity

v = (v1, v2) with constant magnitude |v| = v

while crossing a river of varying flow rate φ e2 = (0, φ) from a point

(x(0), y(0)) = (0, 0) (2)

to a point
(x(T ), y(T )) = (L, Y ). (3)

This means the path of the boat is determined by the sum of these velocities according
to the ODE

(

dx

dt
,
dy

dt

)

= v + φ e2. (4)

(a) Show that the total time of transit for a path (x(t), y(t)) satisfying (2-4) is

T =

∫ L

0

1

v1
dx.

Hint(s): v1 = dx/dt. (Assume this quantity is non-vanishing so that the time
of travel can be expressed as a function of x.)

(b) If the path is expressed as the graph of a function y = u(x), write down an ap-
propriate admissible class and variational problem to determine the path giving
the least time of travel across the river. Hint(s): Show that

u′ =
φ

v1
+

√

(

v

v1

)2

− 1,

and solve this equation for 1/v1.

(c) What can you say about the sign of v2 − φ2?
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The following problems are related to Section 2.5.3 in Haberman and Haberman’s
exercises 2.5.17-27. You will (presumably) also need to consult my notes on Stokes’
Flow around a Cylinder.

Problem 8 (streamlines, Haberman 2.5.17-19)

(a) Show that the transport equation for the motion of mass under a velocity field v
implies

div v = 0 (5)

when the mass density ρ is constant.

(b) Show any velocity field given by v = (ψy,−ψx) where ψ : U → R with ψ a
solution of Laplaces equation on some open set U ⊂ R

2 satisfies (5).

(c) Assuming the velocity field v = (ψy,−ψx) as in part (b), let γ : (a, b) → Lh be a
parameterized curve with image in the level set

Lh = {(x, y) ∈ U : ψ(x, y) = h}.

Show that γ′ is parallel to v. Hint(s): Note that ψ(γ(t)) = h, and differentiate.

Problem 9 (stream function, lift and drag, Haberman 2.5.21-24) Consider ψ : R2\B1(0) →
R by

ψ(x, y) = −α ln
√

x2 + y2 − y

(

1−
1

x2 + y2

)

where B1(0) = {(x, y) ∈ R
2 : x2 + y2 < 1}.

(a) Show ψ satisfies the boundary value problem
{

∆ψ = 0, x2 + y2 > 1
ψ = 0, x2 + y2 = 1.

(b) Set v = (ψy,−ψx) and use Bernoulli’s law

P = P0 − ρ
|v|2

2

for the pressure P to express the force vector exerted by the pressure on ∂U =
∂B1(0) where U = R

2\B1(0) as a flux integral over ∂U .

(c) Calculate the horizontal force (drag) and the vertical force (lift) from your integral
expression in part (b).
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Problem 10 (streamlines, Haberman 2.5.25-26) Again consider

ψ(x, y) = −α ln
√

x2 + y2 − y

(

1−
1

x2 + y2

)

and the associated velocity field v = (ψy,−ψx). Assume α > 0.

(a) Define Ψ(r, θ) = ψ(r cos θ, r sin θ). Determine the domain H of Ψ and plot nu-
merically the level sets

Lh = {(r, θ) ∈ Σ : Ψ(r, θ) = h} ⊂ Σ

and
Lh = {(x, y) ∈ U : ψ(x, y) = h} ⊂ U

for α = h = 1/2.

(b) Show that for every h ∈ R and α > 0, the level set Lh contains a curve γ :
(a, b) → U with

lim |γ(t)| = ∞. (6)

In (6) the limit is taken as the parameter t tends to some limit T . Setting
γ = (γ1, γ2) determine

lim
t→T

γ2(t).

(c) A stagnation point is a point (x, y) ∈ U for which v(x, y) = 0. For which
values of α will there be a stagnation point on ∂U?

(d) Consider
L0 = {(r, θ) ∈ Σ : Ψ(r, θ) = 0} ⊂ Σ

and
L0 = {(x, y) ∈ U : ψ(x, y) = h} ⊂ U .

Write down (carefully) a formula for each of these curves.
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