Assignment 2: ODE Pace: Thursday September 5, 2024, Due Tuesday September 10, 2024

John McCuan

Problem 1 below concerns the following result:

Theorem 1 (existence and uniqueness theorem for a BVP) Given $L > 0$ and $q \in$ $C^0[0,L]$, the problem

$$
\begin{cases}\n u'' = g(x), & x \in (0, L) \\
 u(0) = 0, & (1) \\
 u(L) = 0.\n\end{cases}
$$

has a unique solution $u \in C^1[0, L]$.

Problem 1 (two point BVP) Prove Theorem 1.

Problem 2 (power series solution) Find the general solution of the ODE $y'' + x^2y = 0$ as a power series. Hint(s): Your solution should contain two arbitrary constants c_1 and c_2 , and you should be able to write it in the form $y = c_1y_1 + c_2y_2$ where $\{y_1, y_2\} \subset C^{\omega}(\mathbb{R})$ is a basis of solutions.

Problem 3 (linear ODE) An *n*-th order linear ordinary differential operator is a function $L: C^{\omega}(a, b) \to C^{\omega}(a, b)$ of the form

$$
Ly = \sum_{j=0}^{n} a_j(x) y^{(j)}
$$

for some $a, b \in \mathbb{R} \cup \{\pm \infty\}$ with $a < b$ and some coefficients $a_j \in C^{\omega}(a, b)$ with $a_n(x) \equiv 1$. Show that such an operator satisfies

(a) $L[y_1 + y_2] = Ly_1 + Ly_2$ for every $y_1, y_2 \in C^{\omega}(a, b)$, and

(b) $L[cy] = cLy$ for every $y \in C^{\omega}(a, b)$ and $c \in \mathbb{R}$.

Problem 4 (linear ODE: IVP) A linear ordinary differential equation of order n is an equation of the form

$$
Ly = f \tag{2}
$$

where $f \in C^{\omega}(a, b)$ and L is an *n*-th order linear operator on $C^{\omega}(a, b)$; see Problem 3 above.

- (a) Find a first order system $\mathbf{x}' = \mathbf{F}(\mathbf{x}, t)$ of ordnary differential equations of the type considered in the general existence and uniqueness theorem for ODEs and the existence theorem for linear ODE which is equivalent to the single n-th order ODE (2).
- (b) What does the existence theorem for linear ODE tell you about the equation (2)?
	- (i) What do you know about existence?
	- (ii) What do you know about uniqueness?
	- (iii) What are the appropriate initial conditions to consider along with equation (2)?
- (c) If y_1 and y_2 are solutions of (2) is $y_1 + y_2$ a solution?

Problem 5 (linear ODE) A linear ordinary differential equation $Ly = f$ is said to be **homogeneous** if $f \equiv 0$; see Problem 4 above. Let $L : C^{\omega}(a, b) \to C^{\omega}(a, b)$ be a linear ordinary differential operator of order n as considered in Problems 3 and 4 above.

- (a) Show that if y_1 and y_2 are solutions of a homogeneous linear ODE $Ly = 0$, then any linear combination of y_1 and y_2 is also a solution.
- (b) Show the solution set

$$
\Sigma_0 = \{ y \in C^\omega(a, b) : Ly = 0 \}
$$

is a vector space and find the dimension of this vector space.

(c) In the equation $Ly = f$, especially when f is not the zero function, the function $f \in C^{\omega}(a, b)$ is called the **inhomogeneity**. Show that if $y_p \in C^{\omega}(a, b)$ satisfies $Ly_p = f$, then every other element y of the solution set

$$
\Sigma = \{ y \in C^{\omega}(a, b) : Ly = f \}
$$

satisfies $y = y_p + y_h$ for some $y_h \in \Sigma_0$ from part (b). Hint: Consider $y - y_p$ and show $y - y_p \in \Sigma_0$.

Given the equation $Ly = f$, the equation $Ly = 0$ is called the **associated homoge**neous equation.

Problem 6 (Sturm-Liouville type problems) Given $L > 0$, solve the two point boundary value problem

$$
\begin{cases}\ny'' = -y, & x \in (0, L) \\
y(0) = 0 \\
y(L) = 0\n\end{cases}
$$

Hint: Consider various cases based on the value of L.

Problem 7 (Fourier series solution) Solve the BVP

$$
\begin{cases}\ny'' = \sin(\pi x) + 2\sin(2\pi x) + 3\sin(3\pi x), & x \in (0, 1) \\
y(0) = 0 \\
y(1) = 0.\n\end{cases}
$$
\n(3)

Problem 8 (Problem 7) Is your solution in Problem 7 unique or did you find multiple solutions?

Problem 9 (Problem 7) Complete the following steps to "show" (or at least suggest) the inhomogeneity in Problem 7 has a unique Fourier sine series representation:

(a) Assume

$$
\sin(\pi x) + 2\sin(2\pi x) + 3\sin(3\pi x) = \sum_{j=1}^{\infty} b_j \sin(j\pi x).
$$

Multiply both sides of this equation by $sin(\pi x)$ and integrate from $x = 0$ to $x = 1$. Solve for b_1 .

- (b) Similarly, solve for b_2 and b_3 .
- (c) Show explicitly that $b_j = 0$ for $j = 4, 5, 6, \ldots$.

Problem 10 (Sturm-Liouville problem) Given $L > 0$ consider the one parameter family of two point boundary value problems

$$
\begin{cases}\ny'' + \lambda y = 0, & x \in (0, L) \\
y(0) = 0, & (4) \\
y(L) = 0.\n\end{cases}
$$

Consider three cases in order to find all "nontrivial," i.e., nonzero, solutions.

- (a) $\lambda < 0$.
- (b) $\lambda = 0$.
- (c) $\lambda > 0$.