
Assignment 1: ODE

Partial Solutions and Comments

John McCuan

In the problems below we refer to the following results:

Theorem 1 (general local existence and uniqueness) If

F ∈ C1(Rn × (a, b) → R
n),

then for any p ∈ R
n and any t0 ∈ (a, b) there exists some ǫ > 0 such that the initial

value problem (IVP)

{

x′ = F(x, t) t0 − ǫ < t < t0 + ǫ
x(t0) = p

(1)

has a unique solution.

Theorem 2 (existence and uniqueness theorem for linear ODE) Let a, b ∈ R∪{±∞}
with a < b. If aij , bj ∈ C0(a, b) for i, j = 1, 2, . . . , n, then for every (p, t0) ∈ R

n×(a, b)
the IVP

{

x′ = Ax+ b, t ∈ (a, b)
x(t0) = p,

(2)

where A ∈ C0((a, b) → R
n×n) is the n × n matrix malued function with the real

valued function aij in the i-th row and j-th column and b ∈ C0((a, b) → R
n) is

the vector valued function with j-th component function bj , has a unique solution
x ∈ C1((a, b) → R

n).
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Problem 1 (continuity) Let a and b be extended real numbers in R ∪ {±∞} with
a < b, and let U be an open subset of Rn for some n ∈ N = {1, 2, . . .} (the natural
numbers).

(a) State carefully the definition of continuity for a function f : (a, b) → R.

(b) If f, g ∈ C0(U), show f + g ∈ C0(U).

(c) If f ∈ C0(U), show cf ∈ C0(U) for every c ∈ R.

These are the two main properties making C0(U) a vector space.

Problem 2 (initial value problem) If x is the solution of the initial value problem in
the general existence and uniqueness theorem for ODEs, then it is natural to assume
x is differentiable. Show that in fact, under the assumptions of the theorem the
solution is continuously differentiable that is x ∈ C1((t0 − ǫ, t0 + ǫ) → R

n).

Problem 3 (an ODE) Solve the IVP:























x′ =

(

0 1
−1 0

)

x

x(t0) =

(

3
4

)

Problem 4 (IVP) Consider the initial value problem

{

y′′ = y2

y(0) = 3.
(3)

(a) What does Theorem 1 tell you about the solutions to this problem?

(b) Explore the following assertion numerically:

There exists a uniform ǫ > 0 for which all solutions of (3) are well-
defined and unique on the interval (−ǫ, ǫ), that is for −ǫ < x < ǫ.

(c) Multiply both sides of the ODE by y′ and integrate to obtain an implicit solution.
Does this tell you anything decisive about the assertion of part (b)?
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Problem 4 Solution:

(a) What does Theorem 1 tell you about the solutions to this problem?

If we replace the second order equation with a first order system for a vector
valued function x = x(t) = (x1(t), x2(t))

T :























x′ = (x) =

(

x2

x2

1

)

, x ∈ R

x1(0) = 3
x2(0) = v,

then we may observe first that the original problem does not provide a specifi-
cation for the value of y′(0) = v. Nevertheless, taking any v ∈ R, the theorem
tells us the following:

(i) For any v ∈ R there exists some δ > 0 for which the system has a unique
solution x = x(t) with x ∈ C1((−δ, δ) → R

2) and, consequently, the
original initial value problem for the second order equation has a unique
solution y = y(x) with y ∈ C2(−δ, δ).

Note 1 Notice that for the equivalent system we have changed the name
of the independent variable so that −δ < t < δ, while in the original
problem we obtain a solution defined for −δ < x < δ. This change of
variable name may seem unnecessary in this case because the equation
is autonomous. I guess that in fact Theorem 1 allows nonautonomous
structural functions F = F(x, t), so one can definitely use x as the
independent variable in place of t in the statement of the theorem. If
one does that, however, one ends up with things like x(x) and F(x, x)
which may be a little notationally confusing. Furthermore, the special
case of Theorem 1 for autonomous structure functions F = F(x) is
essentially equivalent to the statement as we have it. (You can think
about why that is the case.) And if you wanted to apply the au-
tonomous version of the theorem to a nonautonomous equation like
y′′ = xy2, then you would probably want to introduce x as one of the
independent variables: x1 = x, x2 = y, x3 = y′. Then it may be conve-
nient to maintain the distinction between the independent variables x
for the original equation/initial value problem and t for the equivalent
system.
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Note 2 One of the main points of this problem is to bring to your atten-
tion that the number δ depends on the value v introduced as a value
of y′(0). Theorem 1 also tells you it is natural to introduce this value.

(ii) In light of (i) the theorem tells us the original problem does have some
solution y on some interval −δ < x < δ. The solution y clearly depends
on the value y′(0), and so the original problem clearly has many different
solutions corresponding to all the different possible values of v = y′(0), and
each of these (as far as we know) exists on a different interval −δ(v) < x <
δ(v) or more generally on an interval a(v) < x < b(b) with a(v) ≤ −δ(v) <
δ(v) ≤ b(v). While the solution for a given value v = y′(0) is unique, the
solution/solutions of the original problem is/are not unique.

(b) Explore the following assertion numerically:

There exists a uniform ǫ > 0 for which all solutions of (3) are well-
defined and unique on the interval (−ǫ, ǫ), that is for −ǫ < x < ǫ.

Perhpas the most natural starting point for this problem is careful consideration
of the nonlinear first order equation/system y′ = y2, y(x0) = y0 considered in
the in-class/recorded Lecture 3 and in Problem 8 below.1 For the equation
y′ = y2 with y(0) = y0 if we assume for simplicity that y0 > 0, then the solution
guaranteed by Theorem 1 will be increasing for x ≥ 0 since y2 ≥ 0 (always)
meaning y increases from a positive value y0 and will remain positive for all
x ≥ 0. In fact, it will be the case that y′(x) > 0 for all x for a somewhat
different reason: If there were some x∗ < 0 for which y′(x∗) = 0, then we would
have also y(x∗) = 0 as well. We can then naturally take

x∗ = max{x : y(x) = 0}. (4)

Applying Theorem 1 to the problem

{

y′ = y2

y(x∗) = 0

we obtain a contradiction because y ≡ 0 is the unique solution, and we know
there is some δ > 0 for which y(x) = 0 for 0 ≤ x < δ. This contradicts the fact

1By the end of this solution, I will have also discussed this problem enough to constitute at least

most aspects of a solution of Problem 8 below, and you may want to go and try Problem 8 on your

own before reading further.
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(4) that x∗ is the maximum. Thus, there is no x∗ with y′(x∗) = 0, and y′(x) > 0
for all x. This means y(x) > 0 for all x as well, and we have no problem writing
the equation as

y′

y2
= 1

on whatever interval a < x < b where the solution is defined. Thus, we can find
a formula for the solution:

−1

y
+

1

y0
= x or y = − 1

x− 1/y0
. (5)

From this formula, we see exactly what happens. We have a = −∞ and b =
1/y0, so that the solution tends to +∞ at the right endpoint. More explicitly,

lim
xր1/y0

y(x) = +∞.

In particular, if we restrict back to a symmetric interval of existence −δ < x < δ,
then the largest δ = δ(y0) we can take is δ = 1/y0. Clearly, there does not exist
an ǫ > 0 such that all solutions of this problem are defined on the interval
−ǫ < x < ǫ. This is because such a value ǫ would have to satisfy ǫ ≤ δ(y0) for
all y0, and

ǫ ≤ lim
y0ր∞

1

y0
= 0. (6)

The conclusion from this discussion might be something like this:

If I have an ODE with the derivative y′ prescribed as the square y2 of
the value y, that is if the function grows at a rate given by the square
of the value of y, then the function blows up in finite time, i.e., for
a finite value of x namely 1/y0 when y0 > 0, and that finite time of
blow-up δ = b = 1/y0 can be arbitrarily small if the initial value y0
becomes (arbitrarily) large, which it can.

Figure 1 shows the solutions corresponding to y0 = 1/2 with blow-up at x = 2,
y0 = 1 with blow-up at x = 1, and y0 = 2 with blow-up at x = 1/2. In fact, the
“time” of blow-up x = δ(y0) is monotonically decreasing in y0 for y0 > 0.

Note: As mentioned above, if y0 = 0, then the unique solution is y(x) ≡ 0
which is well-defined for all x ∈ R. If y0 < 0, then the analysis is somewhat
different with a blow-up at the left endpoint x = a = −δ of the maximal interval
(a,∞) of definition of the solution.
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Figure 1: Solutions of y′ = y2, y(0) = y0 illustrating finite time blow-up and the
monotone dependece of the blow-up time on the initial value.

In this problem we have y′′ = y2 where the first derivative y′ grows like the
value y2 because y′′ = (y′)′. This is somewhat more complicated, but assuming
the value v = y′(0) > 0, the value of y(x) should always be at least 3 for
x ≥ 0, and with the second derivative given by the square of the value (and
the first derivative growing at a rate given by the square of the value) it is not
unreasonable to guess the solution will display a finite time blow-up. In fact,
we might observe at this point that our answer to part (a) can be expanded as
follows:

For v ≥ 0, the solution y (as well as the derivative y′) will be increasing for
x ≥ 0 and strictly increasing for x > 0. Increasing functions always have
limits either finite or infinite. In this case, if we assume a maximum interval
(a, b) of existance for the problem with 0 < b < ∞ and we also assume

3 < L0 = lim
xրb

y(x) < ∞,
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then we must also have

L2 = lim
xրb

y′′(x) = lim
xրb

y(x)2 = L2

0
,

and consequently, we must have

L1 = lim
xրb

y′(x) < ∞

as well. This means we can consider the initial value problem






y′′ = y2, x ∈ R

y(b) = L0,
y′(b) = L1

or the equivalent system






















x′ = (x) =

(

x2

x2

1

)

, x ∈ R

x1(b) = L0

x2(b) = L1,

and obtain an extension of the solution from Theorem 1 contradicting the as-
sumption that the maximal interval of existence (a, b) extended only to a finite
value b on the right. Thus, either there will be a finite value b = δ(v) > 0 for
which the solution is defined for 0 ≤ x < b with

lim
xրδ

y(x) = ∞,

i.e., there will be finite time blow-up on the right, or the solution will be defined
on an interval (a,∞). In summary, the only possible reason for a solution of
the equation y′′ = y2 with y(0) = 3 to have an interval of existence bounded on
the right is that the solution displays finite time blow-up (something) like we
saw with the equation y′ = y2.

One might also guess at this point that not only do the solutions for v ≥ 0
blow up in finite time, but also that the time of blow up b = δ(v) is a monotone
decreasing function of v with

lim
vր∞

δ(v) = 0 (7)
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much like we saw in (6). In particular, if this is the case, it would preclude the
existence of a value ǫ > 0 as described in the main assertion of part (b). Thus,
our guess might be that the assertion is not correct.

Let’s see if we can see any numerical evidience for these guesses. I can find a
numerical approximation for the solution of the initial value problem (with the
additional condition y′(0) = v on the interval from x = 0 to delta, if it has one,
with the Mathematica function

soln[v , delta ] := NDSolve[ { odey’[odex] == odev[odex],

odev’[odex] == odey[odex]2, odey[0] == 3, odev[0]== v},
{odey,odev},{odex,0,delta}]

Note: “soln” is the name of the function. The “:=” is used so that the com-
mand is not evaluated until specific numerical values for v and delta are given.
This can be further augmented by the use of soln[v ?NumericQ,delta ?NumericQ].
The “double equals” == are important to use for the input of the equations and
the initial values. I use the alternative symbol odex for the independent vari-
able because sometimes Mathematica gets confused if there is an independent
variable called x inside the ODE solver NDSolve and another one used outside. I
used the alternative symbols odey and odev for y and y′ respectively for reasons
which hopefully will become clear momentarily.

In order to plot solutions and find specific values, I define the function

y[x ?NumericQ, v ?NumericQ, delta ?NumericQ]

:= odey[x] /. soln[v, delta][[1]]

Taking v = 0 and δ = 2, the numerical approximator returns an error with a
message

NDSolve: At odex == 1.7173152124676099’, step size is effectively

zero; singularity or stiff system suspected.

This confirms my suspicion of finite time blow up, and the blow up should be just
after δ = 1.717. Careful plotting of the solution and computing of values con-
firms the expected behavior. In particular, one finds y(1.717)

.
= 6.03871(10)7.

I’ve plotted this solution in Figure 2 along with solutions corresponding to
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Figure 2: Solutions of y′′ = y2, y(0) = 3, y′(0) = v illustrating finite time blow-up
and the monotone dependece of the blow-up time on the initial (derivative) value.

y′(0) = v = 10 and y′(0) = v = 100 along with the asymptotes in each case
determined approximately from the eror messages from the ODE solver.

Note: The conclusion/guess first discussed above based on comparison with
the ODE y′ = y2 could have been and may be reached directly using a numer-
ical exploration as suggested in the statement of this part (b) of the problem.
I intend that this is indicated in Figure 2, though more extensive numerical
evidence may be helpful in reaching the basic conclusion/guess.

(c) Multiply both sides of the ODE by y′ and integrate to obtain an implicit solution.
Does this tell you anything decisive about the assertion of part (b)?

The parts of the solution I have typed up above should represent concepts you
can relatively easily understand and work you can relatively easily do, though
you may not quite have done it or done it in as much detail as I have. This part
is a little more challenging, but if you think about it carefully, there is nothing
here that is beyond your abilities either. Here I am going to try to justify the
guess from part (b) which may have been motivated by numerical evidence.
Following the hint/instructions given in this part we find

y′y′′ = y2y′ or
d

dx

(

1

2
(y′)2

)

=
d

dx

(

1

3
y3
)

.
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Integrating from x = 0 to x gives

1

2
(y′)2 − 1

2
v2 =

1

3
y3 − 9 or (y′)2 =

2

3
y3 − 18 + v2.

Notice that since y starts with y(0) = 3, the polynomial function

2

3
y3 − 18 + v2

of y is always positive for x > 0. Consequently, we can take the square root
and get the first order ODE

y′ =

√

2

3

√

y3 − 27 + 3v2/2 or
y′

√

y3 − 27 + 3v2/2
=

√

2

3
.

Integrating again from x = 0 to x and changing variables using η = y on the
left, we find

φ(y) =

∫ y

3

1
√

η3 − 27 + 3v2/2
dη =

√

2

3
x. (8)

The function φ : [3,∞) → [0,∞) is increasing because (if we think of y as an
independent variable for a moment)

φ′(y) =
dφ

dy
(y) =

1
√

y3 − 27 + 3v2/2
> 0 for y > 3

and satisfies φ(3) = 3v2/2 ≥ 0. This means φ has a well-defined inverse φ−1 :
[3v2/2, w) → [3,∞) where w > 3v2/2 is some value we don’t know right now
and, in principle, could also be the extended real number +∞. In any case,
knowing the inverse we can write

y = φ−1

(

√

2

3
x

)

to solve the equation on some interval [0, δ) with δ > 0. We do not know the
value of δ ∈ (0,∞] either. This depends on

w = lim
yր∞

φ(y).
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To see how this is going to work2 or at least how it might work, let’s go back
and consider what we did with the ODE y′ = y2 a bit more carefully. That was
a first order equation, and we could integrate to obtain

−1

y
+

1

y0
= x. (9)

This was because the function y′/y2 was easy to integrate. We ran across
something more complicated and not so easy to integrate explicitly in (8) so we
introduced the function φ and it’s inverse φ−1 to solve the equation. Let’s try
that here: We find a function φ : [y0,∞) → [0,∞) by

φ(y) =

∫ y

y0

1

η2
dη.

The value of this function is on the left in (9). This function is also increasing
with φ(y0) = 0 and

lim
yր∞

φ(y) =
1

y0
.

In this case, we know the limit. It is a finite positive value, and it tells us the
domain of φ−1, namely the interval [0, 1/y0). The solution

y = − 1

x− 1/y0

may also be expressed as y = φ−1(x) and thus, we know the domain of definition
of the solution y is [0, 1/y0) as well with

lim
xր1/y0

y(x) = +∞.

That is, we have finite time blow-up at x = 1/y0.

Now let’s go back to y′′ = y2. The function φ : [3,∞) → [3v2/2,∞) with values
given in (8) is increasing, and we really need to know the value

w = lim
y→∞

φ(y) =

∫ ∞

3

1
√

η3 − 27 + 3v2/2
dη

2or what we can properly do with it
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or at least if this positive value is finite. In fact, it is finite. This can be seen
for example because there is some η0 > 3 for which

1

2
η3 > 27− 3v2/2 whenever η > η0.

Thus,

w =

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη +

∫ ∞

η0

1
√

η3 − 27 + 3v2/2
dη

<

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη +

∫ ∞

η0

1
√

η3/2
dη

=

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη +

√
2

∫ ∞

η0

1

η3/2
dη

=

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη − 2

√
2

(

1√
η

)

∣

∣

∞

η0

=

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη +

2
√
2√
η0

< ∞.

We conclude that φ increases to a finite limit w with 3v2/2 < w < ∞. Conse-
quently,

lim
ξրw

φ−1(ξ) = +∞,

and the maximal domain of definition (a, b) for a solution of (3) with y′(0) =
v ≥ 0 satisfies

b = δ(v) =

√

3

2
w

where

w = w(v) =

∫ ∞

3

1
√

η3 − 27 + 3v2/2
dη < ∞. (10)

Thus, these solutions do indeed display finite time blow-up at

x = b = δ(v) =

√

3

2
w.
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It is still not clear that these values b are decreasing with increasing v as sug-
gested by the numerics nor that they satisfy

lim
vր∞

δ(v) = 0 (11)

so that the assertion of part (b) is definitively incorrect.

For the monotonicity, we can attempt to differentiate w with respect to v. This
yields

dw

dv
= −3

2

∫ ∞

3

v

(η3 − 27 + 3v2/2)3/2
dη < 0

so indeed it is the case that w and δ(v) =
√

3/2 w decreases as a function of v.

Finally, to see (11) take any v0 > 0 fixed and consider v > v0. Because the value
of the improper integral (10) is finite, given any ǫ > 0 there is some η0 > 3 for
which

∫ ∞

η0

1
√

η3 − 27 + 3v2/2
dη <

∫ ∞

η0

1
√

η3 − 27 + 3v2
0
/2

dη <
ǫ

2
.

Now we can take v1 > v0 so that for all η with 3 < η < η0 and v > v1 we have

1
√

η3 − 27 + 3v2/2
<

ǫ

2η0

so that for v > v1

w =

∫ ∞

3

1
√

η3 − 27 + 3v2/2
dη

=

∫ η0

3

1
√

η3 − 27 + 3v2/2
dη +

∫ ∞

η0

1
√

η3 − 27 + 3v2/2
dη

<

∫ η0

3

ǫ

2η0
dη +

ǫ

2

=
ǫ

2η0
(η0 − 3) +

ǫ

2

<
ǫ

2η0
(η0) +

ǫ

2

= ǫ.
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This shows
lim
vր∞

w = 0

and establishes (11).

The foregoing solution, especially the solution of part (c) may differ substantially
from what you submitted as solutions. Your answer to part (c) in particular may
have been something like: Following the suggestion

y′y′′ = y2y′,

and integrating once I get

(y′)2 = v2 +
2

3
y3 − 18.

At this point you may have blindly taken the square root to obtain the first order
ODE

y′
√

y3 − 27 + 3v2/2
=

√

2

3
.

And you may have indeed observed that this defines the solution “implicitly” in terms
of an integral:

∫ y

3

1
√

η3 − 27 + 3v2/2
dη =

√

2

3
x

as in (8) above. This is where things are usually left in an elementary course on
ODEs. I guess it is unlikely any of you proceeded to the analysis of the function φ
defined by

φ(y) =

∫ y

3

1
√

η3 − 27 + 3v2/2
dη

and the remainder of my solution which pretends (at least) to give a definitive answer
to the question of part (b). I say “pretends” because I may have made errors in my
solution. No one has checked it, and quite honestly it is fairly likely there is one or
more errors there. (I have already found and corrected some reading over the solution
myself.) On the other hand, I think the basic ideas are there, and if you are interested
and willing, I would be very happy for you to check the details and find any errors.

But my main point is that your answer, I suspect, may have ended somewhere
with an honest admission that you had little idea how to definitively evaluate the
assertion of part (b). For you that may have been the “correct” answer to part (c).
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Indeed, it may be that you had no idea of how to test the assertion of part (b) either
heuristically using the equation y′ = y2 and the existence and uniqueness theorem
or numerically. That is fine too. You should just express your answer(s) clearly and
honestly for yourself. At least that is my suggestion.

Above all, you can think about problems like this and try to understand what
they are asking and how to go about answering them.
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Problem 5 (regularity) Let a, b ∈ R∪{±∞} with a < b. Show that if f : (a, b) → R

is differentiable at x0 ∈ (a, b), then f is continuous at x0 ∈ (a, b).

Problem 6 (open set) A set U ⊂ R
n is said to be an open set if for each p ∈ U

there exists some r > 0 so that

Br(p) = {x ∈ R
n : |x− p| < r} ⊂ U. (12)

The set Br(p) defined in (12) is called an open ball.

(a) Show that an open interval (a, b) is an open set in R
1.

(b) Show that an open ball is an open set.

(c) Show that the intersection

k
⋂

j=1

Uj = {x ∈ R
n : x ∈ Uj , j = 1, 2, . . . , k}

where U1, U2, . . . , Uk are open sets in R
n is an open set in R

n, i.e., any intersec-
tion of finitely many open sets is an open set.

(d) Show that the intersection of infinitely many open sets need not be an open set.
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Problem 7 (uniqueness) Consider the IVP

{

y′ =
√

|y|, x ∈ R

y(0) = 0
(13)

and the function y1 : R → R given by

y1(x) =

{

(1/4)x3/|x|, x 6= 0
0, x = 0.

(a) What does Theorem 1 tell you about the solution(s) of (13)? In particular:

(i) In order to apply Theorem 1 to the IVP (13), identify an appropriate func-
tion f : R → R for which y′ = f .

(ii) Does f satisfy the hypothesis of the theorem in the case n = 1? Why or
why not?

(b) Show y1 ∈ C1(R). In particular:

(i) Draw the graphs of y1 and y′
1
; properly label the axes.

(ii) Draw the graph of f from part (a) above; properly label the axes.

(c) Show y1 satisfies (13).

(d) Find three other solutions of (13) and draw the graphs of two of the solutions
you find.

Problem 8 (another IVP) Consider the IVP

{

y′ = y2,
y(t0) = y0.

(14)

(a) What does Theorem 2 tell you about the solution(s) of (14)?

(b) Solve (14). Hint: The ODE is separable.

(c) For each (y0, t0) ∈ R
2 there exists a unique smallest extended real number a ∈

[−∞, t0) and a unique largest real number b ∈ (t0,∞] for which (14) has a
unique solution on the interval (a, b). Find a and b (as functions of t0 and y0).
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Problem 9 (linear IVP) Consider the IVP
{

y′′ = y,
y(1) = 1.

(15)

(a) What does Theorem 2 tell you about the solution(s) of (15)? In particular:

(i) In order to apply Theorem 2 to the IVP (15), identify an appropriate matrix
valued function A : R → R

2×2 for which the ODE in (15) is equivalent to
x′ = Ax.

(ii) Identify the initial point p for application of Theorem 2.

(b) Solve the IVP for the system you identified in part (a) above.

(c) Solve (15).

(d) Plot at least three different solutions of (15). You may wish to use mathematical
software like Matlab, Maple, or Mathematica. Why does this not violate the
uniqueness assertion of Theorems 1 and 2?

Problem 10 (two point boundary value problem) Given L > 0, a function f ∈
C0[0, L], and c, d ∈ R consider the BVP







y′′ = f(x), x ∈ (0, L)
y(0) = c,
y(L) = d.

(16)

Find a function g ∈ C0[0, L] so that the BVP (16) is equivalent to the BVP






u′′ = g(x), x ∈ (0, L)
u(0) = 0,
u(L) = 0.

(17)

Once you find g, complete the following:

(a) Given the unique solution u of (17) you can find a formula for the unique solution
y of (16) in terms of u.

(b) Given the unique solution y of (16) you can find a formula for the unique solution
u of (17) in terms of y.

Hint: The function g should depend on f , c and d.
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