
Math 4431, Exam 3: Ch. 4 (practice) Name and section:

1. (20 points) Let Q = [0, 2π] × [0, 2π] ⊂ R2, and let Q0 = {{(x, y)} : 0 < x < 2π, 0 < y <
2π} be the singleton partition of the interior of Q. Furthermore, set

X0 = {(x, 0) : 0 < x < 2π},

X1 = {(x, 2π) : 0 < x < 2π},

Y0 = {(0, y) : 0 < y < 2π}, and

Y0 = {(2π, y) : 0 < y < 2π}.

These are the (open) sides of Q. Finally, let

Q1 = {{(0, 0), (0, 2π), (2π, 0), (2π, 2π)}}

be the set containing the set of corners.

Note that the map (x, 0) 7→ (x, 2π) identifies X0 and X1 in the same direction while
the map (x, 0) 7→ (2π−x, 2π) identifes X0 and X1 in the opposite direction. Similarly,
the pair of sides Y0 and Y1 may be identified either in the same direction or the opposite
direction. Thus, we have two possible identifications of two pairs of sides of Q; this
makes four possible combinations of identifications. List the associated identification
spaces for each possible choice (give the associated partition) and identify the space. For
example, here is the first partition corresponding to identifying both pairs of sides in the
same direction:

P1 = Q0 ∪ {{(x, 0), (x, 2π)} : 0 < x < 2π} ∪ {{(0, y), (2π, y)} : 0 < y < 2π} ∪ Q1.

You need to identify this space and then repeat the same procedure for the other three
possibilities. Hint: Draw some pictures of squares to represent the identification of sides.

Solution: The first space P1 is the (one holed) torus, T2.

The partition for identifying X0 with X1 in the same direction, but Y0 with Y1 in the
opposite direction is

P2 = Q0∪{{(x, 0), (x, 2π)} : 0 < x < 2π}∪{{(0, y), (2π, 2π−y)} : 0 < y < 2π}∪Q1.

This is the Klein bottle.

Identifying X0 and X1 in the opposite direction and Y0 and Y1 in the same direction
also gives the Klein bottle in the form

P3 = Q0∪{{(x, 0), (2π−x, 2π)} : 0 < x < 2π}∪{{(0, y), (2π, y)} : 0 < y < 2π}∪Q1.

Identifying both sides in the opposite direction gives

P4 = Q0 ∪ {{(x, 0), (2π − x, 2π)} : 0 < x < 2π} ∪ {{(0, y), (2π, y)} : 0 < y < 2π}

∪ {{(0, 0), (2π, 2π)}} ∪ {{(0, 2π), (2π, 0)}}.

This is the projective plane.
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2. (20 points) Assume f : X ։ Y is continuous and surjective. Let p : X → P be the
generalized projection onto the partition

P = {f−1({y}) : y ∈ Y }.

Show that if Y is Hausdorff, then the quotient space P is Hausdorff.

Solution: Consider the bijection φ : P → Y by φ(P ) = y where P = f−1({y}).
Since f = φ ◦ p is continuous, we know φ is continuous. Now, if P1 and P2 are
distinct partition sets in P, then there are distinct points yj ∈ Y for j = 1, 2 with
f−1({yj}) = Pj . Since Y is Hausdorff, there are disjoint open sets V1 and V2 with
yj ∈ Vj for j = 1, 2. The sets U1 = φ−1(V1) and U2 = φ−1(V2) are open sets in P
with Pj ∈ Uj for j = 1, 2. These sets are also disjoint since if P ∈ U1 ∩ U2, we know
P = f−1({y}) for some (unique) y and y = φ(P ) ∈ Vj. Since this is true for both
j = 1 and j = 2, we have y ∈ V1 ∩ V2 which is a contradiction. We have shown that
P is Hausdorff.
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3. (20 points) Is it necessarily true that the spaces P and Y in the previous problem are
homeomorphic? Justify your answer.

Solution: No, it is not true that the spaces P and Y in the previous problem are
always homeomorphic. If f is an identification map, then it is true, so what we need
(for a counterexample) is a continuous surjective map f : X → Y which is not an
identification map. In order to fail to be an identification map, there must be a set
A in Y which is not open but whose inverse image is open in X.

We know such a map. Let X = [0, 2π) and Y = S1 ⊂ R2. The map f : X → Y
by f(x) = (cos x, cos y) is a continuous bijection. However, the image of the interval
[0, π) ⊂ X is not open in S1, but [0, π) is open in the interval X = [0, 2π). In fact,
the partition in this case consists entirely of singletons: P = {{x} : x ∈ X}, and P
is homeomorphic to the interval X which is not homeomorphic to the circle Y = S1.
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4. Let X denote the rectangle [π/4, 3π/4] × [0, 2π] ⊂ R2, and consider q1 : X → R3 by
q1(φ, θ) = (sin φ cos θ, sin φ sin θ, cos φ).

(a) (5 points) Show that the antipodal map an : R3 → R3 induces a bijection on
X1 = q1(X).

(b) (5 points) Determine the partition P of X induced by the antipodal map on X1.
Let p1 : X → P be the generalized projection into the quotient P

(c) (10 points) Let X̃ denote the rectangle [0, 2π]× [−1/2, 1/2], and consider the iden-
tification space M obtained by identifying the two vertical sides in the reverse
direction. Let p : X̃ → M be the associated identification map. Show that P in
the identification topology is homeomorphic to M by defining an explicit map h
from X̃ to X so that q = p1 ◦ h : X̃ → P is an identification map inducing the
partition M.

Solution:

(a) The spherical coordinates map q1 is one-to-one on [π/4, 3π/4]× [0, 2π) and has
image a band symmetric with the equator on the sphere. We see, however, that

an(sin φ cos θ, sin φ sin θ, cos φ) = (− sin φ cos θ,− sin φ sin θ,− cos φ)

= (sin(π − φ) cos(π + θ), sin(π − φ) sin(π + θ), cos(π − φ))

= q1(π − φ, π + θ).

Note that the map φ 7→ π−φ is a bijection between [π/4, 3π/4] and itself. Also,
θ 7→ π + θ maps the interval [0, π) bijectively onto [π, 2π).

At least for 0 ≤ θ < π, this shows the corresponding half of q1(X) is mapped
bijectively onto the other half. For the other half corresponding to π ≤ θ < 2π,
we note that the expression above can also be written as

an(sin φ cos θ, sin φ sin θ, cos φ) = (− sin φ cos θ,− sin φ sin θ,− cos φ)

= (sin(π − φ) cos(θ − π), sin(π − φ) sin(θ − π), cos(π − φ))

= q1(π − φ, π − θ).

Since θ 7→ θ − π maps [π, 2π) bijectively onto [0, π), we see the antipodal maps
also maps the half of q1(X) corresponding to π ≤ θ < 2π onto the first half,
and an gives a global bijection.

(b) As mentioned, q1 already identifies (φ, 0) with (φ, 2π), so the remaining points
are paired into the partition

P = {{(φ, 0), (φ, 2π), (π − φ, π)} : π/4 ≤ φ ≤ 3π/4}

∪ {{(φ, θ), (π − φ, π + θ)} : 0 < θ < π, π/4 ≤ φ ≤ 3π/4}.
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(c) The whole Möbius strip is given by half of X (under the antipodal identification),
so we need to map half X̃ onto one of the halves of X with the vertical edges
going to horizontal lines and the horizontal boundary of X̃ mapping to vertical
boundary lines in X. If we use coordinates (θ, t) in X̃, the map is

h(θ, t) =

(

π

2
(t + 1),

θ

2

)

.

The composition p1 ◦ h is clearly continuous and onto P. Furthermore, the
preimages of the sets in P are as follows:

For π/4 ≤ φ ≤ 3π/4},

(p1 ◦ h)−1({(φ, 0), (φ, 2π), (π − φ, π)}) = h−1({(φ, 0), (π − φ, π)})

= {(0, 2φ/π − 1), (2π, 1− 2φ/π)},

and for 0 < θ < π and π/4 ≤ φ ≤ 3π/4,

(p1 ◦ h)−1({(φ, θ), (π − φ, π + θ)}) = h−1({(φ, θ)})

= {(2θ, 2φ/π − 1)}.

These are precisely the partition sets in X̃ giving the Möbius strip. Therefore,
M and P are homeomorphic.
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5. (20 points) Consider the following partition of R2:

P = {{(0, y)} : y ∈ R} ∪ {{(x, y) : y ∈ R} : x ∈ R\{0}}.
Show that the identification space of R2 determined by P is not a Hausdorff space.

Solution: Let p : R2 → P be the usual generalized projection with p(x, y) = P
where (x, y) ∈ P .

Let V be and open set in P containing {(0, 0)}. Since p(0, 0) = {(0, 0)}, we know
p−1(V ) is an open set in R2 with (0, 0) ∈ p−1(V ). In particular, there is an open ball
Bǫ(0, 0) ⊂ p−1(V ). Thus, for every x with 0 < |x| < ǫ, we know p(x, 0) ∈ V . That is
the set {(x, y) : y ∈ R} ∈ V .

On the other hand, if W is an open set in P containing {(0, 1)}, then p(0, 1) =
{(0, 1)}, we know p−1(W ) is an open set in R2 with (0, 1) ∈ p−1(W ). There is
some open ball Bδ(0, 1) ⊂ p−1(W ). Again, for every x with 0 < |x| < δ, we have
p(x, 1) ∈ W . That is, the set {(x, y) : y ∈ R} ∈ W .

Evidently, taking x with 0 < |x| < min{ǫ, δ}, we obtain a partition set {(x, y) : y ∈R} ∈ V ∩ W . This shows that every open set V in P containing {(0, 0)} and every
open set W in P containing {(0, 1)} have a nontrivial intersection. Therefore, P is
not Hausdorff.


