Math 4431, Exam 1: Chapters 1-2 (practicédyame and section:

1. Let X and Y be topological spaces.

(a) (10 points) Give a precise definition of continuity for a function f: X — Y.

(b) (10 points) (pointwise continuity) Show that if f : X — Y is continuous, then for
each xy € X and each open set V in Y with f(zq) € V, there is some open set U
in X with zo € U and f(U) ={f(z) :2 €U} C V.

Solution:

(a) A function f: X — Y is continuous if f~(V) ={x € X : f(x) € V} is open in
X whenever V is open in Y.

(b) f~Y(V) us such a set.




Name and section:

2. (2.2.13) A topological space X is called Hausdorff if given = and y in X with = # vy,
there are disjoint open sets U and V with x € U and y € V.

(a) (10 points) Define the term metric space.

(b) (10 points) Show that every metric space is Hausdorff.

Solution:

(a) A metric space is a set together with a function d : X x X — [0, 00) satisfying
the following for each z,y,z € X

(i) d(z,y) =0if and only if x = y.
(ii) d(z,y) = d(y, z).
(iii) d(z,z) < d(z,y) + d(y, z).

(b) Since the metric is positive definite and = # y, we know d(z,y) > 0. Let
r =d(x,y)/2. Then B,(x) and B,(y) are disjoint open sets with x € B,.(z) and
y € B.(y). In fact, if £ € B.(z) N B,(y), then

d(z,y) < d(z,8) +d(&,y) < 2r =d(x,y).

(This is a contradiction.)




Name and section:

3. (20 points) (2.2.18) If X = U2, A; and Y are topological spaces and A; C int(A;) C
As Cint(Az) C As C - -, then show that f: X — Y is continuous if
f‘ A =Y is continuous for j =1,2,3,.. ..

Aj

Solution: Let V' be open in Y and denote the restriction of f to A; by f;. Then
S (V) is open in A;. This means there is a set U; open in X with f; (V) = A;NU;.
Notice that

fHV) =0 f (V)N 4
= US V) N 4]
- U;')il[Uj N A;j].
One appears to be stuck here precisely because we do not know the sets A; are open.

However, because of the nesting, we do know that X = U3, int(A;). In order to
repeat the basic argument above, we will also need to know

f

sint(A4;) = Y is continuous for j = 1,2,3,....
int(Aj)

Let’s verify this first: If V is open in Y and g; denotes the restriction of f to int(A4;),
then
g; (V) = f71(V) Nint(A4)).

Since we know f; is continuous, we know fj_l(V) is open in A;. That is, there is
some U open in X with f; (V) = A; N U. Thus,

g7 '(V) = f; (V) Nint(A;) = U Nint(4;),
and this set is open in X. Therefore, we get an even easier proof:
FTUV) = U V) Nint(Ay) = U, g7 (V) Mlint(4)].

This is a union of open sets in X and is, therefore, open.
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4. (20 points) Show that given x( fixed in a metric space X (with distance function d) the
function f : X — R! by f(z) = d(z, z¢) is continuous.

Solution: We can use pointwise continuity here. Let x1 € X and let ¢ > 0. Taking
0 = € and any point z with d(z,z1) < § = € we can use the triangle inequality

d(x,x0) < d(x,x1) + d(z1,20)
to conclude
d(z, ) — d(z1,20) < d(x,21) + d(21,20) — d(T1,0) = d(T, 1) <€,
and
d(xy,x0) — d(x,x0) > d(x1,20) — [d(2, 21) + d(21, 70)] = —d(2, 1) > —F€.

Therefore,
|f(x) = f(z1)| = |d(z, 20) — d(1,70)| < €.
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5. (20 points) If A is a (nonempty) closed set in a metric space X and x € X\ A, then
show d(x, A) > 0.

Solution: We know
d(xz,A) = inf d(z,a).

acA
Thus, d(x, A) > 0, and if d(z, A) = 0, we have for any € > 0, there is some a € A
with d(x,a) < €. This means AN B.(a) # ¢. Therefore, x € clus(A) C A = A. This
contradicts the fact that x ¢ A.




