
Math 4431, Final Exam (practice) Name/Section:

1. (product space with finitely many factors) Let X1 and X2 be topological spaces and for
Aj ⊂ Xj, j = 1, 2, define

A1 × A2 = {(x1, x2) : xj ∈ Aj , j = 1, 2}.

Let
B = {U1 × U2 : Uj is an open set in Xj , j = 1, 2}.

(a) (5 points) Show that

⋃

B∈B

B = X1 × X2 and
k
⋂

j=1

Bj ∈ B whenever Bj ∈ B, j = 1, . . . , k.

(b) (5 points) Show that

P =

{

⋃

α∈Γ

Bα : Bα ∈ B for α in any index set Γ

}

is a topology on X1 × X2. (P is, of course, called the product topology).
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(c) (5 points) (Theorem 3.12) Consider pj : X1 ×X2 → Xj for j = 1, 2 by pj(x1, x2) =
xj . Show p1 and p2 are continuous.

(d) (5 points) Show that if T is a topology on X1 × X2 (not necessarily the product
topology P) and p1 and p2 are continuous with respect to T , then P ⊂ T .

(e) (5 points) Give an example of a topology on R × R with respect to which p1 :R× R → R is not continuous.

(f) (5 points) Give an example of a topology T which is on R × R which is different
from the Euclidean topology but with respect to which pj : R×R → R is continuous
for j = 1, 2.

Solution:

(a) X1 × X2 ∈ B, and ∩(U1j × U2j) = (∩U1j) × (∩U2j).

(b) φ = φ × φ and X1 × X2 are basic open sets, so φ, X1 × X2 ∈ P.

⋃

β

[

⋃

α

(

Uβ
1α × Uβ

2α

)

]

=
⋃

α,β

(

Uβ
1α × Uβ

2α

)

.

⋃

j

[

⋃

α

(

U j
1α × U j

2α

)

]

=
⋃

α

[(

⋂

j

U j
1α

)

×

(

⋂

j

U j
2α

)]

.

(c) p−1

1
(U1) = U1 × X2 is open when U1 ⊂ X1 is open.

(d) Here we know U1 × X2, X1 × U2 ∈ T . Therefore,

(U1 × X2) ∩ (X1 × U2) = U1 × U2 ∈ T .

Therefore, B ⊂ T and P ⊂ T .

(e) We know the topology must be smaller than P. As long as there is some open
set U1 6= φ, X1 in X1, then the topology

{X1 × U2 : U2 is open in X2}

should be an example. In particular, this should work for X1 = X2 = R.

(f) Now, we know the topology should be bigger than P. The discrete topology
2X1×X2 will be different from P as long as X1 and X2 do not both have discrete
topologies. This, of course, works for R2.
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2. Let X1 and X2 be topological spaces.

(a) (10 points) (Theorem 3.14) If X1 and X2 are Hausdorff, then show X1 × X2 is
Hausdorff.

(b) (10 points) (Theorem 3.15) If X1 × X2 is compact, then show X1 and X2 are
compact.

Solution:

(a) Given (x1, x2) 6= (ξ1, ξ2) in X1 ×X2, we have either x1 6= ξ1 in X1 or or x2 6= ξ2

in X2. Take the first case. Then there are disjoint open sets U1 and V1 in X1

with x1 ∈ U1 and ξ1 ∈ V1. The sets U1 ×X2 and V1 ×X2 are then disjoint open
sets in X1 × X2 separating (x1, x2) and (ξ1, ξ2). The second case is similar.

(b) The projections p1 and p2 are continuous and the continuous image of a compact
set is compact. Therefore, X1 = p1(X1 × X2) is compact. X2 = p2(X1 × X2) is
compact for the same reason.
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3. (Theorem 3.20) Let us take Armstrong’s definition of a connected space:

X is connected if whenever X = X1 ∪ X2 and X1, X2 6= φ, then either

X1 ∩ X2 6= φ or X1 ∩ X2 6= φ.

(a) (5 points) Show that if A ⊂ X is connected, then whenever A ⊂ A1 ∪ A2 and
A ∩ Aj 6= φ, j = 1, 2, then either

A1 ∩ A2 6= φ or A1 ∩ A2 6= φ.

(b) (5 points) Show that if whenever A ⊂ A1∪A2 and A∩Aj 6= φ, j = 1, 2, then either

A1 ∩ A2 6= φ or A1 ∩ A2 6= φ,

then A is connected.
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(c) (5 points) Show that if A is a connected subset of X and A ⊂ U1 ∪ U2 where U1

and U2 are disjoint open sets, then either

A ⊂ U1 or A ⊂ U2.

(d) (5 points) (Corollary 3.24) Show that if A is a connected subspace of X and

A ⊂ S ⊂ A,

then S is connected.

Solution:

(a) If A ⊂ A1 ∪ A2, then we know A = (A1 ∩ A) ∪ (A2 ∩ A). By the definition of
what it means for A to be connected, we have

A ∩ A1 ∩ A2 6= φ or A1 ∩ A ∩ A2 6= φ.

In the first case, since
A ∩ A1 ⊂ A1,

we must have A1 ∩ A2 6= φ. The second case implies A1 ∩ A2 6= φ.

(b) Again, if A ⊂ A1∪A2, then A = (A1∩A)∪(A2∩A), and the assumed conditions
are just the definition of what it means for A to be connected (as a space).

(c) If U1 and U2 are disjoint open sets, then U 1 ∩U2 = φ. This is because if x ∈ U2,
then U2 is an open set disjoint from U1, hence x /∈ U 1. Similarly, U1 ∩ U 2 = φ.
Now, if we apply part (a) to A ⊂ U1∪U2, we must have A∩U1 = φ or A∩U2 = φ.
In the first case, A ⊂ U2 and in the second case A ⊂ U1.

The converse of the assertion in part (c), namely:

If S ⊂ U1 ∪ U2 where U1 and U2 are disjoint open sets always implies

S ⊂ U1 or S ⊂ U2, then S is connected.

is false.

To see this, consider T = {φ, {b}, {a, b}, {b, c}, {a, b, c}}. This is a topology on
X = {a, b, c}. The set S = {a, c} satisfies the condition of the converse of (c).
This is because the only pair of disjoint open sets whose union contains S is the
pair consisting of φ and X = {a, b, c}. On the other hand, S is not connected
because S ∩ {a, b} = {a} and S ∩ {b, c} = {c} are open relative to S.

(d) Assume S is not connected. Then there are sets S1 and S2 with S ⊂ S1 ∪ S2,

S ∩ Sj 6= φ, j = 1, 2, (1)
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and
S1 ∩ S2 = φ = S1 ∩ S2.

Since A ⊂ S ⊂ S1 ∪ S2 and A is connected, we must have A ⊂ S1 or A ⊂ S2.
In the first case, A ⊂ S1 and, consequently, A ∩ S2 = φ. But since S ⊂ A, this
means S ∩S2 = φ which contradicts (1). In the second case, we obtain a similar
contradiction since then S ⊂ A ⊂ S2, and it follows that S ∩ S1 = φ.

Since we have contradictions in all cases, our assumption that S is not connected
must be bogus. S must be connected.
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4. A topological space X is locally connected if for each x ∈ X and each open set U with
x ∈ U , there is some open set U0 and some connected set C with

x ∈ U0 ⊂ C ⊂ U.

(a) (10 points) Show that the homeomorphic image of a locally connected space is
locally connected.

(b) (10 points) Show that if X is locally connected, then for each x ∈ X and each open
set U with x ∈ U , there is an open connected set U0 with

x ∈ U0 ⊂ U.

Solution:

(a) If h : X → Y and X is locally connected, then given any point y = h(x) ∈ Y
and an open set V with y ∈ V , we have a point x ∈ X, and we want to apply
the definition of local connectedness of X at x. We can take the open set U =
h−1(V ), and we get an open set U0 and a connected set C with x ⊂ U0 ⊂ C ⊂ U .
Then we have an open set h(U0) and a connected set h(C) with

y ∈ h(U0) ⊂ h(C) ⊂ V.

This means h(X) is locally connected.

(b) We cannot take U0 directly from the definition, because U0 may not be con-
nected. What we can do is take a set U1 from the definition, and we’ll take the
connected set C too, with

x ∈ U1 ⊂ C ⊂ U.

Now, we can take U0 to be the component of U1 containing x. Let us denote this
set U0 = compx(U1). We need to show U0 is open. The component compx(U1)
is the union of all connected subsets of U1 containing x, and it follows from this
that U0 is a connected subset of U1. (At this point, you might be tempted to
take U0 as the union of all open connected subsets of U1, but you wouldn’t yet
know there are any such sets, so you’d still be stuck.) The good news is that
all we have to show is that U0 is open.

Take a point ξ ∈ U0. We know then, since X is locally connected, that there is
an open set Uξ and a connected set Cξ with

ξ ∈ Uξ ⊂ Cξ ⊂ U1.

Since Cξ is connected with ξ ∈ Cξ ⊂ U1, and compξ(U1) is the union of all such
sets, we know

ξ ∈ Cξ ⊂ compξ(U1).
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On the other hand, ξ ∈ compx(U1) which is also a connected subset of U1 con-
taining ξ. Therefore, compx(U1) ⊂ compξ(U1). In particular, x ∈ compξ(U1).
It follows in the same way that compξ(U1) ⊂ compx(U1). In particular,

ξ ∈ Uξ ⊂ compx(U1) = U0. (2)

The existence of such an open set Uξ for every ξ shows U0 is open (and we’re
done).

The little argument above, starting with “On the other hand” and continuing
up to (2) essentially shows that if ξ ∈ compx(U1), then compξ(U1) = compx(U1),
that is, components are disjoint connected sets partitioning whatever set you
take the components in (in this case U1). This fact could also be quoted in this
problem, if you remember it.
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5. Let X = (0, 1] and consider φ : X → R2 by

φ(t) =







(t, sin(1/t)), 0 < t ≤ 2/π
(6/π − 2t, 1), 2/π ≤ t ≤ 3/π
(0, 7 − 2πt), 3/π ≤ t ≤ 1.

Let Y = φ(X).

(a) (5 points) Show X is locally path connected.

(b) (5 points) Show φ is continuous so that Y is the continuous image of a locally path
connected space.

(c) (5 points) Show Y is not locally path connected.

(d) (5 points) Show the homeomorphic image of a locally path connected space is locally
path connected.

Solution:

(a) Recall that a space X is locally path connected if for each x ∈ X and each
open set U with x ∈ U , there is an open set U0 and a path connected set C
with x ∈ U0 ⊂ C ⊂ U .

If 0 < a < b ≤ 1, then γ(t) = (1−t)a+tb is a path from a to b. Or we could just
remember that intervals are path connected. In any case, the same is true for
any open interval, so given an open set U and a point x ∈ U , there is an open
interval U0 with X ∈ U0 ⊂ U . The interval U0 is open and path connected.

(b) Taking t = 2/π in the first case of φ, we get (2/π, 1). The same value of t in
the second case gives (2/π, 1).

Taking t = 3/π in the second case gives (0, 1). The same value of t in the third
case gives (0, 1).

Since these values agree, φ is well-defined. Furthermore, φ is continuous by the
gluing lemma.

(c) The space Y looks like this:

-0.2 0.2 0.4 0.6

-1.0

-0.5

0.5

1.0

If we take an open ball V centered as pictured at the endpoint φ(1) = (0, 7 −
2π) = p and having small radius, then V ∩ φ(X) contains infinitely many com-
ponents. If p is in any open set V0 with V0 ⊂ V , then there is no connected
set C with V0 ⊂ C ⊂ V . This is because infinitely many of the components of
V must also intersect V0, but any connected set in V must be a subset of only
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one component. Thus, φ(X) is not even locally connected. (Since local path
connectedness implies local connectedness, this means φ(X) is not locally path
connected.)

(d) This is quite similar to part (a) of the previous problem.

If h : X → Y and X is locally path connected, then given any point y = h(x) ∈
Y and an open set V with y ∈ V , we have a point x ∈ X, and we want to
apply the definition of local path connectedness of X at x. We can take the
open set U = h−1(V ), and we get an open set U0 and a connected set C with
x ⊂ U0 ⊂ C ⊂ U . Then we have an open set h(U0) and a path connected set
h(C) with

y ∈ h(U0) ⊂ h(C) ⊂ V.

This means h(X) is locally path connected.

We used here that the continuous image of a path connected set is path con-
nected, which is true.

As this argument was pretty easy/straightforward, and the continuous images of
path connected spaces are path connected, it is interesting to see where it breaks
down for φ(X). A quick look at the argument shows that the only questionable
point is the assertion that the forward image h(U0) is an open set. This must
fail for φ(U0). Let’s see: V was the ball shown in the drawing. The inverse
image of V is the union of some interval (b, 1] with an infinite collection of open
intervals to the left of (b, 1]. This is U = φ−1(V ), and indeed, this is an open
set. Also, 1 ∈ U with φ(1) = (0, 7−2π) = p the center of V . We can apply local
connectedness (or local path connectedness) in X = (0, 1] and take an open
interval U0 = (b′, 1] ⊂ (b, 1]. In fact, U0 = (b, 1] will be fine. Then we see the
problem, the forward image φ(b, 1] is definitely not open in Y . This is a vertical
segment

{(0, t) : a < t ≤ 7 − 2π}.

The point p, in particular, is in this vertical segment, and any open set about p,
as mentioned above, contains many components of φ(X) outside of the vertical
segment.
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6. Let q : R → {−1, 0, 1} = Y by

q(x) =







−1, x < 0
0, x = 0
1, x > 0.

Recall that the quotient topology on Y is defined by

QY = {V ⊂ Y : q−1(V ) is open in R}.
(a) (10 points) What is QY ?

(b) (10 points) (True or False) If q : X → Y is an identification map and X is Hausdorff,
then Y is Hausdorff.

Solution:

(a)
QY = {φ, {−1}, {−1, 1}, {1}, {−1, 0, 1}}.

(There are three singleton sets, and {0} has inverse image {0} which is not open
in R. There are three doubleton sets. If a doubleton has 0 in it, then the inverse
image is a closed interval [0,∞) or (−∞, 0]. In neither case is the inverse image
open.)

(b) This map q is continuous, essentially by definition, and R is certainly Hausdorff.
However, there is no open set separating 0 and 1 in Y . So the assertion is False.
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7. Let Z× Z = {(m, n) : m, n are integers} ⊂ R2.

(a) (5 points) Show G = Z× Z is a group (under addition).

(b) (5 points) Show G acts on R2 by (n, m, x, y) 7→ (x + n, y + m).

(c) (5 points) Identify the quotient space R2/G.

(d) (5 points) Consider A = Z × Z ⊂ R2. Show that the quotient spaces R2/G andR2/A are not homeomorphic.

This problem needs an adjustment/correction. The first three parts are okay, but
the assertion of part (d) is not so obvious. Let’s drop a dimension, and make our
group Z. Of course part (a), then becomes trivial. Part (b) has the same solution as
below, just given componentwise, so it is a bit easier—just checking the definition.
The space in part (c) changes as described in the solution of part (d) below.

Solution:

(a) The operation is (m, n)+(µ, ν) = (m+µ, n+ν). This is clearly well-defined and
associative. The identity element is (0, 0). The inverse of (m, n) is (−m,−n).

(b) The suggested function is clearly a well-defined function from Z2 × R2 to R2.
Also,

(m + µ, n + ν)(x, y) = (m + µ + x, n + ν + y) = (m, n)(µ + x, ν + y).

This is the required associative property. Finally,

(0, 0)(x, y) = (x, y),

so the identity acts as it should, and we have a group action.

For the definition, see Homework Assignment 10.

(c) R2/G is the torus S1 × S1.

(d) In view of the correction, The first space we want to consider is R/Z = S1, the
circle. The other space Y = R/Z with Z considered as a subset, on the other
hand, is a countably infinite collection of circles joined at one point. When you
remove a point from the circle, what you have left is connected. When you
remove the common point from Y , the image of each interval (j, j +1) for j ∈ Z
is a distinct connected component, so these spaces can’t be homeomorphic.

To be a bit more precise, Y = R/Z is a partition of R consisting of partition
sets Z and {x} where x /∈ Z. (These are the points in Y = R/Z.) Therefore,
if we assume h : S1 → Y = R/Z is a homeomorphism. Then S1\{h−1(Z)} is
connected, but (R/Z)\Z has countably many components (j, j + 1) for j ∈ Z.



Name and section:

8. Consider the (universal) covering map φ : R2 → T2 by

φ(x, y) =
(

1 +
cos y

2

)

(cos x, sin x, 0) +
sin y

2
(0, 0, 1).

Also, consider the loops γ[0, 1] → T2 and η : [0, 1] → T2 by γ(t) = 3(cos 2πt, sin 2πt, 0)/2
and

η(t) =

(

1 +
cos 2πt

2

)

(1, 0, 0) +
sin 2πt

2
(0, 0, 1)

respectively both of which start and end at p = (3/2, 0, 0).

(a) (5 points) Draw the (image sets of the) loops γ and η on T2.

(b) (5 points) Recall the concatenation η ⊳ γ : [0, 1] → T2 is a loop given by

η ⊳ γ(t) =

{

γ(2t), 0 ≤ t ≤ 1/2
η(2t − 1), 1/2 ≤ t ≤ 1.

Find explicit formulas for the liftings of γ, η, η ⊳ γ, and (−γ) ⊳ η ⊳ γ starting at
(0, 0) ∈ R2, and draw these paths.

(c) (5 points) Find a fixed endpoint homotopy of the lifting

̂(−γ) ⊳ η ⊳ γ

to a path along a straight line. To which of the four liftings of part (c) above is this
straight line path homotopic?

Solution:


