
Math 4431, Final Exam (practice) Name/Section:

1. (20 points) (Topologist’s Isoperimetric Inequality) The isoperimetric inequality for sub-
sets of Rn relates the n-dimensional measure of a measureable set A ⊂ Rn to the n − 1-
dimensional measure of it boundary:

[Hn−1(∂A)]n

[mn(A)]n−1
≥

[Hn−1(∂B1)]
n

[mn(B1)]n−1

where mn is n-dimensional Lebesgue measure on Rn, Hn−1 is n−1-dimensional Hausdorff
measure on Rn, and B1 is any ball in Rn of unit radius. For example, if n = 2, then this
says the length of the boundary squared divided by the area of a set A is at least 4π.

Prove the following inequality for any subset A of a topological space X:

[ν(∂A)]q

[µ(A)]p
≥

[ν(∂A)]q

[µ(A)]p
(1)

where A is the closure of A, µ : 2X → [0,∞] and ν : 2X → [0,∞] are any nonneg-
ative monotone set functions, and p and q are any nonnegative real numbers. (A
monotone set function µ is one for which µ(A) ≤ µ(B) whenever A ⊂ B.)

Solution: We first claim that
∂A ⊂ ∂A. (2)

To see this, let x ∈ ∂A. Then for every open set U with x ∈ U we have some
ξ ∈ U ∩A and some η ∈ U ∩ (A)c. Since A ⊂ A, we know η ∈ U ∩Ac. Also, since U
is an open set containing ξ and ξ ∈ A, there is some a ∈ A∩U . This means x ∈ ∂A,
and we have established (2).

Since ν is monotone we get
ν(∂A) ≥ ν(∂A). (3)

On the other hand, it is clear that A ⊂ A, so by the monotonicity of µ we have

µ(A) ≤ µ(A). (4)

Combining (3) and (4) with some arithmetic of the extended real numbers, we get
(1).



Name and section:

2. To the left of each term write the number of the appropriate definition/explanation.

(a) (2 points) connected

(b) (2 points) compact

(c) (2 points) locally connected

(d) (2 points) locally compact

(e) (2 points) path connected

(f) (2 points) locally path connected

(g) (2 points) product space

(h) (2 points) closure

(i) (2 points) open

(j) (2 points) closed

1. an element of the topology

2. the set of all functions
f : Γ →

⋃

α∈Γ

Xα

where {Xα} is a collection of topological spaces with index set Γ and f(α) ∈ Xα

3. for a set A,
⋂

A∩U=φ, U open

U c

4. for each point x, there is an open set U and a compact set K such that x ∈ U ⊂ K

5. whenever X = A ∪ B, then either A ∩ B 6= φ or A ∩ B 6= φ

6. for each pair (a, b), there is a continuous function f defined on an interval [0, 1]
such that f(0) = a and f(1) = b

7. when the set ∩Aα is an intersection of closed sets and ∩Aα ∩ A = φ, then one can
find a finite collection {α1, α2, . . . , αk} for which

k
⋂

j=1

Aαj
∩ A = φ

8. for each x and each open set U with x ∈ U , there is a path connected set C and
an open set W with x ∈ W ⊂ C ⊂ U

9. Ac is an open neighborhood

10. whenever U is open and x ∈ U , there is an open set W with x ∈ W ⊂ U and every
nonempty proper open subset of W has nonopen complement



Name and section:

Solution:

(a) 5

(b) 7

(c) 10

(d) 4

(e) 6

(f) 8

(g) 2

(h) 3

(i) 1

(j) 9



Name and section:

3. To the left of each term write the number of the appropriate definition/explanation.

(a) (2 points) second countable

(b) (2 points) Hausdorff

(c) (2 points) loop

(d) (2 points) homotopy

(e) (2 points) fundamental group

(f) (2 points) deformation retraction

(g) (2 points) group

(h) (2 points) continuity

(i) (2 points) identification map

(j) (2 points) topologist’s sine curve

1. a homotopy of a set into itself

2. associative loop concatenation in a path connected space

3. a continuous function such that when the inverse image of a set is open, then the
set is also open

4. having a basis of open sets U1, U2, U3, . . .

5. a function f defined on an interval [0, 1] and satisfying f(0) = f(1)

6. example of a connected space whose closure is not path connected

7. a continuous function on the cross product of a space with the interval [0, 1]

8. the inverse image of an open set is open

9. having an associative operation on a set that contains an identity element and
inverses

10. being able to separate points by open sets

Solution:

(a) 4

(b) 10

(c) 5

(d) 7

(e) 2

(f) 1



Name and section:

(g) 9

(h) 8

(i) 3

(j) 6



Name and section:

4. Let X = R2\{(0, 0)}.

(a) (10 points) Identify the fundamental group of X and give explicit representatives
(loops) for each element of the fundamental group.

(b) (10 points) Take one of your loop representatives γ and a representative η of 〈γ〉−1,
and give an explicit homotopy of the concatenation η ⊳ γ to the identity. Here,
the concatenation is defined by

η ⊳ γ(t) =

{

γ(2t), 0 ≤ t ≤ 1/2
η(2t − 1), 1/2 ≤ t ≤ 1.

Solution:

(a) The fundamental group is Z. Let γ : [0, 1] → R2\{(0, 0)} by γ(t) = (cos 2πt, sin 2πt).
Denote by γj the loop γ concatenated with itself j times for j = 2, 3, 4, . . .. The
constant loop id(t) ≡ (1, 0) represents the identity in the fundamental group.
The remaining elements are the inverses of γj :

γ−1 = −γ : [0, 1] → R2\{(0, 0)} by γ−1(t) = (cos 2πt,− sin 2πt),

and let γ−j be γ−1 concatenated with itself j times for j = 2, 3, 4, . . .. The
mapping 〈γj〉 7→ j is an isomorphism of π1(X) → Z.

(b) Take γ(t) = (cos 2πt, sin 2πt) and η(t) = γ−1(t) = γ(1−t) = (cos 2πt,− sin 2πt).
Define

H(t, s) =

{

γ(2(1 − s)t), 0 ≤ t ≤ 1/2
η((1 − s)(2t − 1) + s), 1/2 ≤ t ≤ 1.

Notice first that the values assigned to H for t = 1/2 are γ(1−s) = η(s). Thus,
H is well-defined and continuous by the gluing lemma. Also, H(0, s) = γ(0) ≡
(1, 0) and H(1, s) = η(1) ≡ (1, 0). Finally, H(t, 0) ≡ η ⊳ γ and H(t, 1) ≡ (1, 0).
Thus, H is a homotopy of η ⊳ γ to the identity (loop).



Name and section:

5. (20 points) Recall that X is said to be locally compact if for each point x ∈ X, there
is an open set U and a compact set K such that x ∈ U ⊂ K. Assume X is locally
compact and Hausdorff. Show that given any point x ∈ X and any open set U with
x ∈ U , there is a compact set K and an open set W with x ∈ W ⊂ K ⊂ U .

Solution: Because X is locally compact, we can start with an open set U0 and a
compact set K0 such that x ∈ U0 ⊂ K0. We can, of course, take W0 = U ∩U0 which
is an open set with x ∈ W0 ⊂ K0. We have no reason to believe, however, that
K0 ⊂ U .

Because X is Hausdorff, we do know K0 is closed. And furthermore, if we had
another closed subset C of U , then K0 ∩C would be a compact subset of U . (Closed
subsets of compact sets are always compact.)

Consider {x} and U c. These are both closed sets. In particular, K1 = K0 ∩ U c is
compact. Of course, this intersection K1 might be empty, but if it is, that means
K0 ⊂ U and we’re done because we can just take W = U0 ⊂ K = K0 ⊂ U .

Otherwise, for each point ξ in K1, there are disjoint open sets Uξ and Vξ with x ∈ Uξ

and ξ ∈ Vξ. Taking a finite subcover of K1 consisting of a finite collection of the Vξ,
we get disjoint open sets U1 (the intersection of the corresponding Uξ) and V (the
union of the finitely many Vξ) with x ∈ U1 and K1 ⊂ V .

This last paragraph is just a proof that you can separate a point from a compact set
in a Hausdorff space. That fact can be quoted if you remember it.

In any case, K = K0 ∩ V c is our compact set, and W = U0 ∩ U1 is our open set.
There are, perhaps, some things to check. First of all K is compact because, as
mentioned, K0 and V c are closed making K a closed subset of the compact set K0.
(A closed subset of a compact set is always compact.) The set W is also open and
nonempty because x ∈ W . Also, since U0 ⊂ K0 and U1 ⊂ V c, we know W ⊂ K. It
remains to show K ⊂ U . But remember that if ξ ∈ K, then ξ ∈ V c and this means,
ξ /∈ K1 = K0 ∩ U c. Since we know ξ ∈ K0, it must be that ξ /∈ U c, i.e., ξ ∈ U . This
completes the solution.


