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Chapter 0O

Preliminaries

0.1 Definitions

0.1.1 Functions
(1) Let f: A — B be a function. Then,

e f is onto if, and only if, there exists a function g : B — A such that
fg = 1B-

e f is one-to-one if, and only if, there exists a function g : B — A such
that gf = 14 (provided A is non-empty).

e f Is in 1-1 correspondence if there exists a function g : B — A such
that fg = 1p and gf = 14. In this case, g is unique and is called the
inverse function of f, typically denoted f~I.

0.2 Extra Proofs and Lemmas

0.2.1 Group Theory & Abstract Algebra

(1) Split Exact Sequence: Given an exact sequence of abeilean groups and
homomorphisms,

0G5 HS K0,
and a homomorphism ¢ : K — H, such that ¢v0 = 1, we have H x GO K.

Proof. Define a: G® K — H by a(g@® k) = 0(g) + ¥(k): it is easy to see
that « is a homomorphism. Also, « is (1-1), for if a(g@® k) = 0, we have

0=¢(0(g) + (k) = ¢pio(k) = k;

but, then 6(g) = 0, so that g = 0 since 6 is one-to-one.

7
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Moreover, « is onto, since given h € H, we have
o(h = Yo(h)) = ¢(h) — ¢pypd(h) = 0
Thus, there exists g € G such that h — ¥¢(k) = 0(g), that is,

h=0(g) +vp(h) = alg®p(h))

0.2.2 Limit Points, Closure & Density

(1)

(4)

Let (X,7) be a topological space, and A = X. We show that A = A U Ly,
where L 4 is the set of all accumulation points of A:

Proof. If A = A, then by Theorem 2.2, pg. 29, L, — A and we are done.
So, suppose that A is not closed. Then, A does not contain all of its limit
points; consequently, L4 # . Further, the set B = A U Ly is closed by
Theorem 2.2, pg. 29.

To conclude the proof, we show that any closed set C' containing A, contains
B. Indeed; Let C < X be closed, such that A < C. Now, for a € L4 and
open set O, containing a, we have that An (0, —{a}) # &. But,as A c C,
we have C' n (O, — {a}) # &. Therefore, a ¢ C. So, Ly < C, implying

AuLycC. By Theorem 2.3, pg. 30, A= B =Au Ly. O

Let (X,7) be a topological space, and A < X. We prove that L4, defined
above, contains all limit points of sequences contained in A:E|

Proof. Let {an};—; = A, such that a, — a. Then, a € Ly, .neny and
every neighbourhood of a contains a point of {a, : n € N} — {a} = B.
As {a, : n € N} ¢ A, every neighbourhood of a has a point in A — {a};
ac LA. ]

Let (X,7) be a topological space, and A = X such that A = X. We prove
that An O # &, for all O # &, O € T:

Proof. Suppose that for some O € 7, O # &, An O = . By a previous
lemma, we have A = (La — A) U O°, implying O° = A. But then we

have X = O¢ = O¢ = A, as O is open. But, contrarily, this implies that
(O°)°=O=XC=® D

We prove that the intersection of a closed set and a compact set is always
compact:

IThis assumes the general definition of limit points of a set
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Proof. Let (X, 7) be a topological space. Let H, K < X, such that H is
closed and K is compact. Consider H n K. Now, if {O,}, is an open cover
of Hn K, then K < |J,cny Oa U (X — H). But, since H is closed, X — H
is open. In conclusion, as

HoKc ) Oqsu(X—H)
aeN

such a finite subcover of H n K exists. O

We prove that if (X, d) is a metric space with the induced topology, then
C < X is closed if, and only if, whenever {a,}>_; is a sequence in C, with
{a,} — L, we have L € C"

Proof.

(== ): Suppose, to the contrary, that C' = C, but L ¢ C. Thus, there
exists some € > 0, such that B.(L) n C = &, as L is not a limit point
of C. But then, a, ¢ B.(L), for all n > N, N € N is sufficiently large;
A contradiction.

( <= ): Suppose, to the contrary, that C # C. Then, by extra lemm
there is some [ € L¢, such that L ¢ C. Thus, for each n € N, we pick
an € By, (L) nC # . Consequently, {ay};_; is a sequence in C' such
that a,, — L € C, by hypothesis; A contradiction.

O

0.2.3 Separation

(1)

We show that a compact T5 space T5. Consequently, we show that it is Ty:

Proof. Let X be the compact T space. We first show that X is T5:

Let A < X, such that A is closed. Then A is compact. Further, let b € X
such that b ¢ A. Now, for each a € A, there exists an open set O,, and some
open set Of, such that O, nOf = . Tt follows that A < |,y Ou < U, Oa
and that | J,.ny Oa = Oa is open. Further, b € (), Of = Oy, is open. And
by construction, we have Oq N Op = . So, X is T3.

To show that X is Ty, let A, B < X, be disjoint and closed. Then, arguing
as above, we have two disjoint open subsets Op € 7, O4 € T with O4nOp =

. O

2reference this
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0.2.4 Compactness

(1)

We show that a homeomorphism between locally compact T3 spaces, X, Y,
extends to a homeomorphism between the Alexandroff compactifications; in
other-words, locally compact homeomorphic 75 spaces have homeomorphic
one point compactifications.

Proof. Suppose that f : X — Y is the homeomorphism. Define g : X u
{01} = Y U {00y} as follows:

g(x) = {f(x) v

Q09 T = 001

It is clear that as f is a bijection, so is g. We show that g is a homeomor-
phism:

Suppose that U is open in Y. Then, g7'[U] = f~![U], which is open in
X U {oo1}. Now, if O is open in Y U {003}, we have O = K U {005}, where
K c Y is compact. Then,

g HO] = g7 K v {ooa}] = g7 [K] u g™ [{oo2}] = g7 [K] U {00}

which is open in X U {c01}.

Consequently, as g is one-to-one and onto, since f is, g is a homeomorphism
by Theorem 3.7, pg. 48. O

We show that if (X, 7) is a topological space, and S < X is compact, then
if W is a neighbourhood of S, there exists another neighbourhood G, such
that

ScGcW

Proof. By exercise 21, section 3 pg. 55, and the fact that X u {y} = X, the
result follows. O

0.2.5 Connectedness

(1)

We show that if X is locally connected, then every connected component of
X is open in X; hence X is the disjoint union of its connected components:

Proof. Let x € Y, where Y is a connected component of X. By definition, x
is contained in some open connected subset U of X. Since Y is a maximal
connected set containing z, we have x € U < Y. This shows that Y is open
in X. O
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0.2.6 Quotient Maps & Quotient Topology

(1) We show that if ¢ : X — Y is a quotient ma[ﬂ then the topology of Y is
the largest which makes ¢ continuous:

Proof. Suppose that 7 was some other topology on Y, such that ¢ was
continuous. We conclude by showing that 7 < 7y:

Indeed; if O € 7, then ¢~ 1[O] is open in X. But then, q[¢ ![O]] = O € 7v.
Thus, 7 < 7y. O

(2) Suppose that (X,7) is a topological space, and A a non-empty set. We
show that if f: X — A, then the quotient topology on A, 74 is indeed a
topology:

Proof. By definition, as noted above, O is open in A, if f~[O] is open in
X:
(a) As f7J] = &, and f71[A] = X, &, A€ T4.
(b) As
iy od = ol
jed jeJ

we see that |

(c) Lastly,

e Oj ETA.

I B eVl

j=1 j=1

0
SO, ﬂj:l Oj €ETA.

(3) We show that projective real n-space, P", is HausdorﬁEI:

Proof. Let ¢ : S™ — P™ be the quotient map, and suppose that u,v €
P", u # v; there are such z,y € S™, such that ¢ ![{u}] = {x, —z}, and
g [{v}] = {y, —y}. We exhibit an € € R such that the open neighbourhoods
of radius €, centered at u, v are disjoint:

Let

1 .
€= §m1n{||xfy\|,|\5€+y||},

3 Armstrong does not do a good job describing what the topology on Y is. A simple exercise
shows that by letting O be open in Y whenever ¢~1[O] is open in X, we have a topology on
Y'; call this 7y . Further, Armstrong does not do an adequate job describing what a quotient
map is: ¢ : X — Y is a quotient map if it is onto, continuous with respect to 7y, and such
that g~ 1[O] is open in X implies O open in Y. We can summarize by saying that q is onto,
and such that O is open in Y iff g7![O] is open in X.

4Credit for the initial idea of the proof goes to Brain M. Scott. In addtion, we use the
notation B(z,z’) for the open ball of radius 2/, centered at z.
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and set U = B(x,¢€), and V = B(y,€). It follows form the construction of
U,V , that U,V,—U, -V are pairwise disjoint, and open neighbourhoods of
x,y,—x,—y € S™. Moreover, as noted above, ¢~ (¢q[U]) = U u —U, and
¢ 1(¢[V]) = V u —V. To conclude, we show that q[U] n q[V] are disjoint
neighbourhoods for u,v € P™.

Indeed;

q[U] nq[V] = q[B(z,€) 0 S"] n q[B(y,€) n S"]
= q[B(z,€)] n q[B(y,€e)] n P"
= B(u, q(€)) n B(v,q(e)) n P"
= By n By nP"

Now, if By n By # &, then we would have ¢~ ![By n Ba] = U NV # (&,
contary to assumption. Thus,

Ul nqlV] = nP" =

0.2.7 Topological Groups

(1) Suppose that (G, 7, =*) is a topological group. Fixing z € G, we show that

zQO € 7 if, and only if, O € 7:

Proof.

( = ): Suppose that zO € 7. It follows from pg. 75, that L,-1 : G —
G is a homeomorphism and an open map: thus, L,-1[O] € 7.

( < ): Suppose that O € 7. Then, as noted on pg. 75, L, : G — G
is a homeomorphism and an open map: thus, L,[O] = 2O € 7.

O

(2) Suppose that (G, T, =) is a topological group. We show that O is a neigh-

bourhood of z € G, if, and only if, 71O is a neighbourhood of e:

Proof. Suppose that = € G, and without loss of generality, O is an open
set containing z. Then, by a previous lemm L, 1[0] = 2710 € 7, and

contains z 1z = e.

By considering L, similar logic shows the reverse implication. O

(3) We show that R, with the Euclidean topology and addition is a topological

group:

S5reference this
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Proof. The fact that (R, +) is a group is clear. To conclude, we show that
+=m:R—->R,and -1 =14:R — R are continuous:

Now, i(x) = —x, which is polynomial, and so continuous. And, as m(z,y) =
x4y = Pi(z,y) + Pa(x,y), where P; is the projection mapping from R?, m
is continuous; it is the sum of two continuous functions.

A similar argument show that (R", 7, +) is a topological group. O

(4) Let (G,7,m) be a topological group. We show that the topological auto-
morphisms of (G, 7,m), for a subgroup of (Aut)(G). We denote the set of
all topological automorphism of G by Aut,(G).

Proof. Tt is well known that (Aut(G), o) is a group. We show that (Aut,(G),0)
is a group:

As the composition of automorphism/homeomorphisms is another auto-
morphism/homeomorphism, the fact that (Aut.(G),o) is closed is clear.
To conclude, as f € Aut,(G) is a homeomorphism, f~! € Aut,(G). Fur-
thermore, e : (G,7) — (G, T) given by e(z) = x is a homeomorphism. So,
e € Aut-(G).

By the subgroup test,
Aut(G) < Aut(G)

O
(5) Suppose that (G, 7, m) is a Ts, finite, topological group. We claim 7 = P(G):

Proof. As G is Ty, {x} is open for each x € G. Thus, as the union of open
sets is open, it follows that 7 = P(G). O

(6) We claim that all topological groups of order 2 are topologically isomorphic.

Proof. Let (G,7g,m) be the topological group of order 2. Consider the
topological group (Zs, 7z,, +) and the map ¢ : G — Zs, given by ¢(eq) = 0,
and ¢(g) = 1. The fact that ¢ is a group isomorphism is well-known.
Further, ¢ is 1-1 and onto, and ¢! is continuous, as 7¢ = P(G) and
Tz, = P(Z3). This concludes the proof. O

0.2.8 Homotopy Type

(1) We prove that if A is a subspace of a topological space X and G : X xI — X
is deformation retract relative to A, then X and A have the same homotopy

typd’}

6 Armstrong does not do a good job of defining a deformation retract. We use the following
definition. ”Strong” deformation retract: A is a ’strong’ deformation retract of X iff there
exists amap D : X xI — X such that D(a,t) = a for every a € A, D(z,0) = z and D(z,1) € A
for all x € X. See this post on SE.



http://math.stackexchange.com/questions/488527/deformation-retract-and-homotopy-equivalence
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Proof. Indeed: Let f : A — X be the inclusion map and g : X — A be
defined by g(x) = G(z,1). We have previously shown that f and g are
continuous. It is only left to show that fog~1x and go f ~ 14:

Direct computation shows that

(9o f)la) = g(f(a)) = g(a) = G(a,1) = a,

while fog ~g 1x. This completes the proof. O

We show that any non-empty convex subset, X, of a euclidean space is
homotopy equivalent to a point:

Proof. Without loss of generality, we assume that X < E”. We first show
the existence of a deformation retract, G : X x I — {x}, where z € X is
fixed:

Let G be defined as G(y,t) = (1 — t)y + tx, for all y € X. Then, clearly
G(y,0) = y, and G(y,1) = z € {z} for all y € X. So, G is deformation
retract. By the above, X and A are of the same homotopy type: null-
homotopic. O

We show that (X, 7) is contractibleﬂ if, and only if, every map f: X — Y,
(Y, 7v) a topological space, is null-homotopic:

Proof.

( = ): Suppose that (X, 7) is contractible to zo € X. Let F be
the contraction, and f : X — Y any map. The claim is that fo F :
X x I - Y is a homotopy between f, and f(z).

Indeed; We note that the composition of two continuous functions is
continuous and

(f o F)(z,0) = f(F(2,0)) = f(z)

As well as,

(fo F)(x,1) = f(F(2,1)) = f(z0)

( <= ): Suppose that every map f : X — Y is null-homotopic. Then,
in particular, ¢ : X — X is null-homotopic. Thus, there exists a map
F: X xI — X, such that F(z,0) = z = i(z), and F(z,1) = 29 =
Z(LL'())

O

7A space (X,7) is contractible (to a point g € X) provided that there exists a map
F: X x I - X such that F(z,0) = z and F(z,1) = zo.
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(4) Let (X,7) be a topological space. We show that the cone on X, CX is
contractible. We consider the ”"cone tip” as X x {0}:

Proof. Consider the function H : (X xI)xI — X xI, given by H((x,v), s) =
(z,v(1 — s)). By the product topology, it follows that H is continuous. [
Let m: X x I - CX = XxI/xx{0} be the canonical map. The claim is that
7o H : (X xI)xI— CX is the desired homotopy.

Direct computation shows that, for all € X, ve V,

m(H((x,v),0)) = n((x,v)) = (x,v),

and

m(H((z,v),1)) = 7((2,0)) = (z,0)
Thus, H = m o H is the desired homotopy. O

8For every t € I, we can associate 7(H((z,v),t)) with (c,v(1 — t),t), showing that the
product topology of CX x I agrees with that of (X x I) x I.
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Chapter 1

Introduction

1.1 Euler’s Theorem

There are no exercises listed for this section.

1.2 Topological Equivalence

There are no exercises listed for this section.

1.3 Surfaces

There are no exercises listed for this section.

1.4 Abstract Spaces

There are no exercises listed for this section.

1.5 A Classification Theorem

There are no exercises listed for this section.

1.6 Topological Invariants

1. We prove that v(T) — e(T) = 1 for any tree T":

Proof. We proceed by induction on the number of edges in T

e Basis: If e(T) = 1, then v(T') = 2, and so, v(T) —e(T) = 1.

17
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e Hypothesis: Suppose that v(T') — e(T) = 1 for any tree T, such that
e(T) = n, for some n € N.

e Step: Suppose that T is a tree, such that e(T) = n + 1. Now,
removing any edge will disconnect the tree, since by definition, T’
contains no loops. Say that we remove and edge eg € T, breaking
up T into Ty, To. Now, clearly, v(T) = v(T}1) + v(T1), and e(T) =
n+1=e(Ty) + e(Tz) + 1. Thus, by the inductive hypothesis,

v(T) = e(T) = v(T1) + v(T2) — e(T1) —e(T2) — 1
1411
=1

O

. We show that inside any graph we can always find a tree which contains

all the vertexes:

Proof. Let G be a finite graph. If G is already a tree, we are done. So,
suppose that G is not a tree. Then, by the comments on pg. 3, G contains
a (without loss of generality, minimal) loop, L. Now, we remove some edge
er, € L. Now, as L is a loop, e;, does not disconnect L, and so L — ey,
is a tree. We continue in this way, as long as the new graph formed by
removing an edge is not a tree.

To conclude, we note that this process must stop at some loop, because
e(G) < oo; further, we have not removed any vertexes. O

. We prove that v(T') — e(T') < 1 for any graph T', with equality, precisely

when I' is a tree:

Proof. We have previously shown the equality condition. Using the above
proof, we select a subtree, with the same vertexes as I'. Call this tree I".
Then, v(I”) — e(I") = 1. As I" was created by removing edges, and not
vertexes, we have v(I") = v(I"), and e(T") < e(T"”). So,

e(l) —e(@) <o) —el) =1

O

. We find a tree in the polyhedron of Fig. 1.3 which contains all the vertexes

and construct the dual graph I'" and show that I' contains loops:

Proof. Please refer to figures and O

. Having done Problem 4, thicken both 7" and T" in the polyhedron. T is a

tree, so thickening it gives a disc. We investigate what happens when you
thicken I'?
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(a) The tree that contains every vertex. (b) Blue: Dual graph. Green: loops.

Proof. T is basically two loops connected at a point, with some other edges
connected that do not make any more loops. So thickening should produce
something homeomorphic to what is shown in Problem 11 (b). O

6. Let P be a regular polyhedron in which each face has p edges and for
which ¢ faces meet at each vertex. We use Euler’s formula to prove that,

+ +

D=
=
NN
Q| =

Proof. We count the number of faces of P as follows: Since each face of P
has p edges, pf = 2e. We count the number of vertexes as follows: Since
each vertex has ¢ faces which meet on it, gv = 2e. In all, f = 2¢/p, and
v = 2¢/q. Assuming that Euler’s formula holds for P, we have

2 2
v—e+f=—efe+—e=2
q b

And the result follows. O
7. We deduce that there are only 5 regular (convex) polyhedra.

Proof. If P is a polyhedra, it must satisfy the above criterion.Further, we
assume that p > 3, since if not, we cannot construct a polygon. We use
Shliit notation. By checking routinely, for values up to p,q < 5 we have
the following set of polyhedra:

{13,3}, 13,5}, {5, 3}, {3, 4}, {4, 3}}

Now, if p = 6, then we must have
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(a) Tetrahedron (b) Cube

(c) Octahedron

(e) Icosahedron

Figure 1.2: All five platonic solids.

Further, as 0 < 1/q < 1/5, we have

1 1 q+6
-4 - = —
6 ¢ 6q
2_2
6g ¢
_11
2 e

A contradiction.

Please see figures [I.2a], [T.25] [[.2d, [T.2d] and [I.2¢] O

8. We check that v — e + f = 0 for the polyhedron shown in Fig. 1.3 and
find a polyhedron which can be deformed into a pretzel and calculate its
Euler number:
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10.

11.
12.

Figure 1.3: ”pretzel”

Proof. For the polyhedron in Fig. 1.3, v = 20, e = 40, f = 20. Therefore
v—e+ f = 0. Figure [1.3] is basically a donut with two holes, i.e. a
?pretzel”.

Figure has 38 faces (10 on the top, 10 on the bottom, 10 inside the
hole, and 8 around the outside sides). It has 76 edges (29 on the top,
29 on the bottom, 10 vertical ones inside the holes and 8 vertical ones
around the outside sides), and it has 36 vertexes (18 on the top, 18 on the
bottom); Therefore v — e + f = —2. O

This is left to the reader as an exercise.

We find a homeomorphism from the real line to the open interval (0, 1),
and show that any two open intervals are homeomorphic:

Proof. We show that the real line, R is homeomorphic to (=7/2, 7/2).This
amount to showing that arctan : R — (—7/2,7/2) is continuous, 1-1, onto
and that tan = arctan™! is continuous. Thus, R ~ (—7/2, 7/2).

To conclude the proof, we show that any open subset, (a,b) < R is home-
omorphic to (=7/2,7/2), a # b:

Indeed, under the mapping f(z) = (b — a)(£ + %) + a, we have

(=7/2,7/2) — (a,b)
As f is a degree 1 polynomial in R, it follows that it is 1-1, onto and
continuous with a continuous inverse. O
This is left to the reader as an exercise.
We find a homeomorphism from S$? — N = S — {(0,0,1)} to E*:
Proof. As pointed out in Armstrong, we find a formula for stereographic
projection. From the fact that S? = {z € R® : ||z]|s = 1}, and rules of

calculus, any line passing through v = (z,y,2) € S> — N and N is of the
following form:

p(t) = (0,0,1) + t(x,y, 2) =< tw,ty, 1 —t(1 —x) > (1.1)
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For t € [0,0). As the z component of p is zero exactly when ¢y = 1/1—z, we
substitute ¢y back in (1) to obtain our formula for stereographic projection:

€z Y
1_‘[ ) ) = )

@y =5 72)
It is left to show that II is 1-1, onto, continuous, with a continuous inverse.

1-1: By component wise comparison, the result follows.
Onto: Given (zo,yo0) € R?, we have, after some simple algebra,

2 2

To Yo oty

H<7777 " O) :(x()vy())a
T T r

where r = 1 + 23 + y2.
Continuity: As IT is a linear transformation in R?, we know that from
rules of calculus/real analysis that it is continuous.

Cont. Inverse: II7! is as outline above in the derivation of onto. For
the same reasons the function is continuous.

O

13. Let z,y € S?. We find a homeomorphism from S? to S? which takes x to
y. We do the same for the plane, and torus:

Proof. We assume that results about matrix groups are applicable.

e 52: Consider S? and SO(3). Let # € S%. Then, by the Gram-
Schmidt Orthogonalization process, there exists X € SO(3) for which
x is the first column of X. Likewise for y, its corresponding matrix
Y. Then, YX~1 € SO(3) and maps z to y. As SO(3) is a group,
(YX~ 171 e SO(3). Thus, Y X! is a homeomorphism which takes
z to y.

e E?: Fix (r,y), (z,w) € R®. Then, the function, f that sends (a,b) €
R? to

((x+2)—a(y+w)=0b)

sends (x,y) to (z,w). As f is linear, it is continuous. Likewise, its
inverse is continuous.

e Torus: Consider the torus as S' x S'. Then component wise exami-
nation shows that the example above proves the result.

O

14. This is left to the reader as an exercise.

15. This is left to the reader as an exercise.
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16.

17.

18.

19.

20.

21.

This is left to the reader as an exercise.

Define f : [0,1) — C, by f(x) = 2™, We prove that f is a continuous
bijection. In addition, we find a point « € [0,1) and a neighbourhood
N, of z in [0,1), such that f[N] is not a neighbourhood of f(z) in C;
consequently, this means f is not a homeomorphism.

Proof. We first show that f is a continuous bijection:

Via Euler’s formula,
¥ = cos(2mx) + isin(2rz), VreR
Using this fact, we show that f is 1-1 and onto.

e 1-1: Suppose that cos(2mz) + isin(2rz) = cos(2my) + isin(2my) for
some z,y € [0,1). Then, by component-wise comparison of complex
numbers we have cos(2my) = cos(2nz), iff, 2y = 27z, iff = y, as
x,y € [0,1); likewise for sin. Thus, f is 1-1.

e Onto: Let y € C. Then, y = cos(27wyg) + isin(2wy;) for some
(30,91) € R%. But as f : [0,1) — C, we have 0 < 2myo, 27y, < 27.
Consequently, f is onto.

e Continuity: By the definition of continuity in C, and the fact that

cos, sin are continuous, we have that f is continuous.

Next, consider [0,1/2) < [0,1). This is a open neighbourhood in [0, 1), by
definition. But, f[[0,1/2)] is C intersected with the upper half of the plane

minus z = —1. Which is not a neighbourhood of z = 1 € C, because any
open ball centered around z = 1 must contain the lower plane. Therefore,
f is not a homeomorphism. O

This is left to the reader as an exercise.
This is left to the reader as an exercise.

We prove that the radial projection of the tetrahedron to the sphere is a
homeomorphism:

Proof. A solid proof of this relies on the fact that a circumscribed polygon
with center of mass 0 is homeomorphic to S™ via radial projection. The
result of which are shown in chapter 5. O

Let C denote the unit circle in the complex plane and D the disc which it
bounds. Given two points x,y € D — C, we find a homeomorphism from
D to D which interchanges x and y and leaves all points of C' fixed:
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Proof. This is more or less intuitively obvious. But writing down an ex-
plicit function is not so easy. First note that for any a € C, the function
f(z) = = takes St to itself. To see this suppose |z| = 1. then

1-A
z—a z—a
1—az| |zz—az
z—a
T zZ-a):
z—al 1l
“lz=allzl

=1

If |a|] < 1 then the denominator never vanishes so this is a continuous
function on D. Also, f(0) = —a, so if |a] < 1 then since f takes C to itself
and 0 maps to —a € (D — C), f must take all of D to itself. The inverse
f~! is therefore also a continuous function from D to D that takes C' to
C'. Now suppose z,y € C with |z| <1 and |y| < 1, let

Z—T
fiz) = 1—-zz

and .
_ ATt
fZ(Z) N 1—t3]12

where y; = f1(y) and t = R Vi 7 vlyll—‘w As shown above, both f; and fo
take C' to itself. Finally let

g(2) = zei(1=1=Dm/(1~lz2)

where xo = f2(0). Then g(z2) = —x9 and g(—x2) = 22 and g(z) = 2z V
z € C. Since z — |z| is continuous, g is built up from sums, products and
compositions of continuous functions and therefore g is continuous.

The function f; ! fy Lgfafi is therefore a continuous function from D to
D that switches x and y and fixes C. O

With C, D as above (in Problem 21), define h: D —C — D — C by

h(0) = 0
h(re®) = rexp [z (e + lzirr)]

We show that h is a homeomorphism, but that h cannot be extended to a
homeomorphism from D to D and draw a picture which shows the effect
of h on a diameter of D:
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Proof. The function h restricted to a circle of radius r acts by rotation
of 27r/(1 — r) radians. Now 27r/(1 —r) — o as r — 1, so as the circle
radius grows towards one, it gets rotated to greater and greater angles
approaching infinity. Thus intuitively it’s pretty obvious this could not be
extended to the boundary. See figure [77]

Now, we can think of (r,#) as polar coordinates in R%2. And the topology
on C is the same as that on R?. Thus as a function of two variables  and
0 this is just a combination of continuous functions by sums, products,
quotients and composition. Since the only denominator involved does not
vanish for |r| < 1, this is a continuous function of r and 6 on D which is
clearly onto. Since it is a simple rotation on each circle of radius r, it is
also clearly one-to-one. The inverse is evidently

h=1(0) =0
h=1(rei®) = rexp [Z <9 - 12irr)]

Now, let r, = ;%5 for n odd and r,, = "T_l for n even. Then for n odd,

1= = 5, and for n even ;= = n — 1. Therefore exp | %
if r is even and —1 if r is odd. Now, r, — 1. So if A could be extended
to all of D we must have h(1) = lim h(r,,). But h(r,) does not converge,
it alternates between 1 and —1. Therefore, there is no way to extend h to

C' to be continuous. O

] equals 1

Using the intuitive notion of connectedness, we argue that a circle and a
circle with a spike attached cannot be homeomorphic (Fig. 1.26):

Proof. In the circle, if we remove any one point what remains is still con-
nected. However in the circle with a spike attached there is one point we
can remove that renders the space not-connected. Since this property of
being able to remove a point and retain connectedness must be a topo-
logical property preserved by homeomorphism, the two spaces cannot be
homeomorphic. O

Let X,Y be the subspace of the plane shown in Fig. 1.27. Under the
assumption that any homeomorphism from the annulus to itself must send
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the points of the two boundary circles among themselves, we argue that
X and Y cannot be homeomorphic:

Proof. The two points that connect the two spikes to the two boundary
circles in X must go to the two points that connect the two spikes to
the boundary circles in Y, because those are the only two points on the
boundary circles that can be removed to result in a disconnected space,
and because by assumption the circles go to the circles. Since the two
points lie on the same circle in Y but on different circles in X, some part
of the outer circle in Y must go to the outer circle in X and the rest
must go to the inner circle in X. But then some part of the outer circle
in Y must go to the interior of X. I'm not sure exactly how Armstrong
expects us to prove this but it basically follows from the intermediate
value theorem, applied to the two coordinates thinking of these shapes as
embedded in R2. 0

With X and Y as above, consider the following two subspaces of E3:
X x[0,1] ={(z,y,2) | (z,y) € X,0 <z <1},

Y x [0,1] = {(z,y,2) | (z,y) e Y,0 < z < 1}.

Convince yourself that if these spaces are made of rubber then they can
be deformed into one another, and hence that they are homeomorphic:

Proof. With the extra dimension, the squareness can be continuously de-
formed so that it is a solid torus, with two flat rectangular shapes sticking
off. One has both rectangles pointing out and one has one pointing out and
the other pointing in. Since the torus is round, the first space made from
X can be rotated at the location where the inner rectangle is a full half
turn to point the rectangle out, and as parallel slices (discs) of the torus
move away from where the rectangle is attached, the rotation gradually
gets less and less until it becomes zero before reaching the other rectan-
gle. In this way the inner rectangle can be rotated to point out without
affecting the other rectangle and with a gradual change in rotation angle
between them guaranteeing the operation is continuous. O

This is left to the reader as an exercise.

This is left to the reader as an exercise.



Chapter 2

Continuity

2.1 Open and Closed Sets

(1) We verify each of the following for arbitrary subsets A, B of a space X:

AuB=AuUB:

Proof. A and B are closed by theorem (2.3). Thus A U B is closed.
Now A € A and B € B. Therefore A U B is a closed set containing
A v B. By Theorem 2.3 A u B is the smallest closed set containing
A U B, thus it must be that AU B € A U B. Conversely, A U B is a

closed set that contains A, so A U B 2 A. Similarly A U B 2 B. Thus
AUB2AUB. Thus AuB=AuUB. O
AnBcZ AnB:

Proof. A is a closed set that contains A n B, so A n B < A. Likewise
AnB<cB. ThusAnB<c AnB.

To see that equality does not hold, let A = Q and let B = R—Q. Then
AnB=g,s0AnB=g. BtA=Rand B=R,so AnB=R. [

A=A

Proof. A is the smallest closed set containing A by corollary (2.4), and
A is closed by theorem (2.3), that contains A. Thus A = A. O

] o

(AuB)°2Avu B:

Proof. Let x € A u B. Assume, without loss of generality, that = € A.
Then there is an open set U < A such that z € A. But then z € U <
o o

AuB. Soxe Au B.

27
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Thus
AuBc (AuB)°

To see that equahty does not hold, let A = Q and let B = R—Q. Then
A = @ and B @ And AuB =R, s0 (Au B)° =R. Therefore
(Au B)° =RbutAmB:Q. O

(An B)° = AnB
Proof. Let U be an open set in A n B. Then U c A and U € B. Thus

(AnB)° < AnB. Conversely suppose € AnB. Then 3 open sets
Uand V st.z e U< Aand x € V € B. Then U nV is open and

reUnVCAnB. Thus(AmB)OQ;)lm%.
Thus

o e}

(AnB)°*=AnB

(A)° = A:
Proof. Clearly
(A)°c A
Let T € A Then there exists an open set U, buch that x e U < A. Now

A is a union of open sets so is open. Let V' = A NU. ThenzeV < A

Therefore x € (A)° and so,

Ac (A
Thus,
A= (A)
O
(2) This is left to the reader as an exercise.
(3) We specify the interior, closure and frontier of the following subsets.
{(x,y): 1 <2? +y* <2} (2.1)

E? — {(0,1), (t,0) : t € R}
E? — {(x, sin(1/z) : 2 > 0} (2.3)
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o {(z,y):1<a?+y*<2} = A

FrA=An(E-A)
=An{{(z,y):0<2? + ¢y <1} U {(z,y): 2 <2 +y*}}
={(z,y): 2+ =1va®+y*> =2}
The rest are left to the reader.
e E> —{(0,1),(t,0): te R} = B:
From the fact that E*? — B = E2, we have

FrB=2B
The rest are left to the reader.
o E* — {(z,sin(1/z) : x > 0} = C-
From the fact that E? — C' = E2, we have

FrC=C
The rest are left to the reader as an exercise.

This is left to the reader as an exercise.

We show that if A is a dense subset of a space (X, 7), and if O € 7, that
OcAnO:

Proof. Suppose, to the contrary, that O ¢ A n O. Then, there exist some
x € O, such that x ¢ An O.

As An O is closed, z € (An O)° and so, there exists some O, € 7 such
that z € O,, and
AnOn(O—{z}) =g

x

But, as x ¢ A n O, we have
AnOnO, =

and consequently, An O n O, = . But then, setting B = O n Oy, we
have x € B, B e 7, but An B = (J, contrary to extra lemma; A # X, a
contradiction. O

We prove that if Y is subspace of X, and Z is a subspace of Y, that Z is a
subspace of X:

Proof. The open sets in Y are exactly the sets O nY where O is open in
X. The open sets in A as a subspace of Y are therefore sets of the form
An (Y nO) where Oisopenin X. But ACY, 50 An(YnO)=AnO.
Therefore the open sets in A as a subspace of X are exactly the same as
the open sets of A as a subspace of Y. O
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Suppose that Y is a subspace of (X, 7). We show that a subset A of YV is
closed in Y if it is the intersection of Y with a closed set in X. Further, we
show that we get the same result if we take the closer in Y or X:

Proof. If A c Y is closed in Y, then Y — A is open in Y. But then, by the
definition of subspace topology, Y — A =Y n Oy, for some open O, € X.
Consequently, we have

A=Y — (Y nOy)
=Y n(Y nO,)“
=Y n(X-0,)

And, as X — O, is closed in X, this proves the result. We note that a similar
case holds in the case where A is open.

Letting /Ty and - A, denote the closure of A < Y in ¥ and X respectively,
we show that A, = A,:

From the previous part of this proof, we have that A, =Y n C, where C
is closed in X. Now, since C is a closed set in X containing A, we have
Ay cC,andsoY nA, c Ay, =Y nC.

Again by the first problem, we have Y n A, is closed in Y and contains A.
So,

A, cYnA, A,
Thus,fysz. U

Let Y be a subspace of (X, 7). Given A < Y, we show that AS < AS, and
give an example when the two may not be equal:

Proof. Let x € AS. Then, there exists and open O, < X, with x € O, and
O, c A. Now, since O, c AcY,z€e O, nY c Aand, O, nY is open in
Y, by definition. Thus, z € Aj.

An example when they might not be equal is in the following case: Let
X =R,Y =2Z,and A = {0}. Then, AS = &. But, every point of Z is open
in the subspace topology, and so Ay = {0}. O

Let Y be a subspace of X. We show that if A is open (closed) in Y, and if
Y is open (closed) in X, that A is open (closed) in X:

Proof. Suppose A c Y < X and A open in Y. Then A =Y n U where U
is open in X. The intersection of two open sets is open, so if Y is open in
X then A is open in X. Similarly, if Ac Y < X and A closed in Y, then
A=Y nC where C is closed in X (by exercise 7). The intersection of two
closed sets is closed, so if Y is closed in X then A is closed in X O
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We show that the frontier of a set always contains the frontier of its interior,
and describe the relationship between Fr(A u B) and Fr A, Fr B:

Proof. Let (X, 7) be a topological space, and let A € X. We want to show
that Fr A° < Fr A.

Let x € Fr A°. Then,

reANn(X—-A) =AU (X -A)u(A-A°)

Now, if z € A° and x € X — A, we are done. So suppose that x € A° and

x € (A— A°). But then, x € A° U (A — A°) = A. Thus, the result follows.

The inclusion Fr(A u B) < Fr A u Fr B always holds, and is left to the
reader. To show that the reverse inclusion does not always hold, consider
X =R, and A = Q. Then,

FrfAu A =FrR =
#FrAuFrA®° =R

O

This main part of this exercise is left to the reader. However, we do show
that this topology does not have a countable base:

Proof. Let B = 7 be the topology specified. Suppose, to the contrary,
that {B,}®_; is a countable base for the topology 7. Define the function
f:R — Nas follows: for each z € R, let f(x) = n, such that B, c [z, 1+z).
Now, we show that f is 1-1 to arrive at a contradiction:

Indeed; Suppose to the contrary, without loss of generality, that x < y.

Then, if f(z) = f(y), f(x) = [z,2 + 1) © By = [y,y + 1), which is
impossible. Thus, z = y. O

We show that if a topological space (X,7) has a countable base for its
topology, then X contains a countable dense subset. I.e. A second countable
space is separable:

Proof. Let {B,}, be a countable base for 7. By the Axiom of Choice, let
é be the collection of elements {a;}; such that a; € B;. The claim is that
A=X.

Indeed; let O € 7. Then, O = Uj Bj, where B; € B. Now, as A = |, z;,
where z; € B;, we have A n O # . Thus, by extra lemma, A = X. O
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2.2 Continuous Functions

(1)

We show that if f : R — R is a map, then the set of points left fixed by f
is closed. Further, the kernel of f is closed.

Proof. Define fo(x) = f(x) — x. The rest is left to the reader. O
We show that the function h(z) = 15@ is a homeomorphism from the real

line to the open interval (0,1):

Proof. Let

el‘

ST

f(z) ye(0,1), z—In (y)

L—y
We show that f is onto and 1-1:

e As f(x) =y, f is onto.
e Suppose f(z) = f(y). Then,

e* ey

1+er 1+ev

Therefore e = e¥ and f is 1-1.

implies e* + e* 1Y = e¥ + " 1Y

For a,b e R,
b
-1 = (1 Ll _
) = (gt

which is open. Since the intervals (a,b) are a basis, it follows from Theorem
(2.9(b)) that f is continuous. And f((a,b)) = (f(a), f(b)), so f takes open
sets in the base to open sets. Therefore f~! is continuous, and so, f is a
homeomorphism. O

Let f : E — R be a map and define T'y : E — E? by I'f(2) = (2, f(z)). Whe
show that I'; is continuous and that its image, with the induced topology,
is homeomorphic to E:

Proof. We show that I'y is continuous. To do this, we use the sequential
criterion for continuity in E". Let {x,}, be a sequence in E, such that
zn — x € E. Then I'y is clearly continuous by the fact that f is, and
component wise comparison. That is,

Ly(zn) = (@n, f(20)) = (2, f(2)) = Tf(2)

Next, we show that ImI'; is homeomorphic to E:

We claim that the function p; : InT'y — E, defined by pi((z, f(z)) = « is
the desired homeomorphism.
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Continuity: We have previously shown that the projection map is con-
tinuous.

1-1: This is true, by construction.
Onto: This is clear, as f a map from E to E.
Cont. Inverse: This is clear, as P1_1 = I'y, and we have shown I'; is

continuous.

This proves the resultEI O

We determine what topology on X implies that every real-valued function
definied on X is continuous:

Proof. X must have the discrete topology, where every subset is open. To
show this, it suffices to show points in X are open.

Indeed; Fix x € X and define f : X — R by

fla) = {f(“") !

fly)=1 y#u
Then,
F7H(-1/2,1/2)) = {a}
and thus f is continuous, since (—1/2,1/2) is open and {x} is open. O

Consider X = R with the co-finite topology, (R, CO). We show that f :
E — X defined by f(z) = x is a map, but not a homeomorphism:

Proof. To see that f is continuous, let O € CO. Then, X — O = R-0
is finite. But then, f~1[0] = O, and O° is finite in E. This implies that

O = 0. Thus, O° = O is open in E. The fact that f is 1-1 is clear.

Consider the inverse function of f. Note that (a,b), a < b is open in E.
But, f~![(a,b)] = (a,b) = f[(a,b)], which is not open in X. Thus, f~! is
not continuous. O

o
Suppose X = A uAsu..., where A,, © A, for each n. We show that if
f: X — Y is a function such that, for each n, f|A4, : A, — Y is continuous
with respect to the induced topology on A,,, then f is itself continuous:

Proof. Let x € X. Then x € A,, for some n and A,, € A, 1. Thusxz € A, 1,

and X = UA,.

LA similar argument applies to E™.
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Now, let U be open in Y. Since f is continuous on A,,, by theorem (2.8), f

[e]
is continuous on A,,. Consequently,

FUU) A A, = J1EHO)

n

o]
is open in A,,. So, there exists open sets V,, such that

VonA, = ffl(U) N A,

And so,
FHU) = 710 a ) = W) m An) = (Ve 0 A,
which is a union of open sets and so is open. O

Let (X, 7) be a topological space, A = X, and x 4 its characteristic function.
We describe the frontier of A in terms of x:

Proof. We note that if (X — A) n A # ¢, then there exists a € (X — A),
a € A. With this in mind, we claim that x 4 is continuous at a € X if, and
only if, a ¢ Fr A.

Indeed,;

( = ): Suppose, to the contrary, that y4 is continuous at a € X, but
that a € Fr A. Then,ae X — A, and a € A. Now, let O = (.99,1.99)
R, without loss of generality. Then, x4(a) = 1 € O. Now, since x4
is continuous, le[(’)] is open, and such that a € Xgl[(’)]. But then,
X — Anx,'[0] # &. Further, this implies that X — Anx;*[0] # &.
But then, xa(a) = 0€ O, a contradiction.

(=)

(8) We determine which of the following maps are open or closed:

e r— e’ onR:

Proof. Open: Let C' = f(R). Since f(AuB) = f(A)u f(B), it suffices
to check that f is open on a base of open sets. Let B be an open interval
in R. If B has length greater than 27 then f(B) is all of C. So f(B)
is open in C. Otherwise f(B) is an open arc of the circle. Also open.
Thus in all cases f maps B to an open set. Since open balls are a base
f must be an open map.

Not Closed: To show f is not closed, for each n € N let E,, = [2n7 +
1/n,(2n+1)m—1/n]. Let E = U, E,. Suppose z is a limit point of E.
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Then (z — 1/2,z + 1/2) intersects at most one E,,. Thus z is a limit
point of E,. Thus z € E,, since E, is closed. Thus F is closed. But
f(E) is equal to C intersected with the upper half plane im(z) > 0.
This is an open set in C, and not closed since z = 1 is a limit point of
f(E) not in f(E). Thus f(F) is not closed. O

o [:E*—>E% f(a,y) = (z,yl):

Proof. Not Open: To see f is not open, let D be the open unit disc.
Let H* = {(z,y) | y > 0} and H~ = {(a,y) | y < 0}. Then f(D) —
D n H*. Therefore z = 0 € f(D) and every open ball containing 2
intersects H*“ < f(D)¢. Thus f(D) is not open.

Closed: Now, suppose E is closed in E2. Let E/ = EnH ™~ and let E” be
E’ reflected about the x-axis. Then f~1(E) = (En H") u (E"). Now
E and H* are closed so E n H* is closed. And E” is closed because
H~ is closed, so £’ is closed, and reflection is a homeomorphism. Thus
f7HE) is closed. O

e z— 23 0on C:

Proof. Open: We first show it is open. Let Ag, g, 1, = {r€? € C |
01,0,71,70 € [0,00) and 1 < 6 < 03,11 < r < ra}. Then the set
B = {A0,,05r1,r, | 02— 61 <2m and 0 < 7 < ro} form a base for the
usual topology on C. The sets are clearly open and the intersection of
any two of them is another one. Also for any z € Ag, ¢, r,,r, there is
an open disc D s.t. z € D € Ay, 9, r, r, and for any open disc D with
z € D we can find 01,02,71,72 s.t. 2 € Ay, 9,10, € D. Now consider
what happens to Ag, g, r, under the function f. If 6 — 6 > 27/3
then f(Ag, 0,.r1.r,) 1S a full open annulus. Otherwise f(Ag, 6,.r1,00) =
Asp, 365, r, Which is open. Thus f takes basic open sets in 8 to open
sets. Since f(A u B) = f(A) u f(B) for any sets A and B, it suffices
to check open-ness on the base 8. Thus f is an open map.

Closed: We now show f is a closed map. Let E be any closed set in
C. Let Q1 be the first quadrant {z + iy | x,y = 0}. Let Q2,Q3,Q4
be the other (closed) quadrants. Then @; is closed, so E n Q1 is
closed. The map f restricted to @1 is a homeomorphism from @Q; to
its image flg, : @1 — f(Q1) = Q1 U Q2 U Q3 because its inverse
re?? s re'/3 is continuous. Thus f(E n Q) is closed in Q. Likewise
f(EnQ;) is closed for all i = 1,2, 3,4. Functions respect unions, thus
since E = u;(E n Q;) it follows that f(E) = u;f(E n Q;). But each
f(E n Q) is closed. Thus f(E) is closed. O

(9) We show that the unit ball in E™ (the set of points whose coordinates satisfy
22 + -+ + 22 < 1) and the unit cube (points whose coordinates satisfy
|z;| <1, 1 < i< n) are homeomorphic if they are both given the subspace
topology from E":
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Proof. Note that nowhere in the proof of lemma (2.10) is it used that we
are in two dimensions. The proof goes through basically without change to
any finite dimension where we replace ”disc” with ”"ball”. Now, let

f:E"—0—>E"—0

be given by
1
fv) = WV

Then f is continuous and the image of f is the unit sphere. Let g be f
restricted to the surface of the unit cube. Then g is one-to-one continu-
ous. The intersection of an open ball with the surface of the cube maps to
the intersection of an open ball with the sphere. Thus ¢ is an open map.
Therefore the inverse of g must be continuous. Therefore g is a homeomor-
phism. By the generalization of lemma (2.10), g may be extended from the
boundaries to a homeomorphism from the whole cube to the whole ball. [

2.3 Space-Filling Curves

(1)

We find a Peano curve which fills out the unit square in E?:

Proof. We apply lemma 2.10. By a previous exercise, we have that 0[0, 1]? is
homeomorphic to ¢S'. Further, the boundary of the unit triangle is home-
omorphic to 05'. Therefore, by lemma 2.10, there is a homeomorphism,
f, from the unit triangle to the unit disc. Let h : [0,1] — T be the space
filling curve of the triangle as mentioned in Armstrong. Then, f o h is a
continuous mapping from [0, 1] — [0, 1]?. Further, it is space filling. O

We find an onto, continuous function from [0, 1] to S*:

Proof. From a previous exercise, we have that E* =, (0,1) x (0,1). Further,
we have shown that E? ~, S? —(0,0,1). Thus, we extend f to g : [0,1]> —
S2 by
T x ¢ [0, 1]?
oy - [F@ 0.1
(0,0,1) =z d[0,1]

Then, if O < S? is open, and contains (0,0, 1), then g~1[O] is the entire
square via homeomorphism. Now, if O = $? does not contain (0,0,1) and
is open, then ¢g~![O] = f~1[O] which is clearly open.

Thus, goh, where h is the triangle space-filling curve, is the desired function.
O

We determine whether or no a space-filling curve can fill out the plane:

Proof. Note, [0,1] is compact, while E? is not. O
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(4) We determine whether or not a space filling curve ca fill out all of the unit
cube in E?:

Proof. Let I = [0,1]. Let f : I — I x I be a space filling curve. Let
g:IxI—1xIxIxIbethemap (z,y)— (f(z), f(y)) with the natural
identifications (I x I) x (I x I) with I x I x I x I. Let p be projection onto
the first three coordinates of I x I x I x I. Then po go f is a continuous
function from I onto I3. O

(5) To proved a rigorous proof of this, at this point, is out of the question.
However, via theorems (3.3), and (3.7), it is not true.

2.4 The Tietze Extension Theorem

Throughout these exercises, we assume that (X, d) is a metric space, and that if
A c X, it has the subspace metric. Further, the topology on X is the induced
topology, if not stated otherwise.

(1) We show that d(z, A) = 0 if, and only if, z € A:

Proof.

Suppose that d(x, A) = 0 = inf,ec 4 d(x,a). Then, for every e > 0, there
exists a € A, such that

|d(z,a) — 0] = d(z,a) <€

Now, let O be an open subset of X, z € O. Choose a € A such that,
d(xz,a) <e. Then, a€ O, and O n A # &. Thus, x € A.

Suppose that € A. Then, we do the canonical ball construction and
pick a sequence {ay, },, of elements of A, such that d(z, a,) — 0, n — .

O

(2) We show that if A, B ¢ X are disjoint and closed, there exists disjoint open
sets U,V such that Ac U and Bc V:

Proof. By lemma 2.13, there exists a continuous function f: X — [—1,1],
such that f[A] =1, and f[B] = —1. Let O; = [-1,0], and O, = [0,1].
Then, Oy, 05 are open in [—1,1]. Thus, f~1[0;] is open, as f is continuous.
Further, f~1[O1] n f71[O0s2] = &, and A < f~1[01], B < f~}{Os]. O

(3) We consider what topology the discrete metric gives a space:
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Proof. We first show d is a metric. It is real-valued. And clearly
dlz,y) 2 0iff x =y
Also clearly d(x,y) = d(y,z). Finally, the only way we could have
d(z,y) + d(y, 2) < d(z, z)

is if the left-hand-side is 0. But then x = y = 2z and so the right-hand-side
is also zero. Thus d is a metric.
Since

{o} ={y | d(z,y) <1/2},
the sets {x} are open. Since every set is a union of its points, every set is
open. Thus this metric gives the discrete topology. O

We show that every closed subset of a metric space is the intersection of a
countable number of open sets:

Proof. Let A be a closed subset of X. Define
1
A, ={re X :d(z,A) < E}

Then, A, is open, for each n € N. The claim is that (1), A, = A:

Clearly, A c A, for each n so, A c [, A,. Next, suppose that z € (), A,
but x ¢ A. Then,

1> inf d(z,a)=€¢>0
ae),, An

By the Archimedian Principal, there exists ng large enough so that 1/n, < €.
But then,
v ¢ () A
n

Thus, (), An € A.
This concludes the proof. O

If A, B are subsets of a metric space, their distance apart d(A, B) is the
infinum of the numbers d(z,y) where x € A and y € B. We find two disjoint
closed subsets of the plane which are zero distance apart and check that
both of the closed sets which you have just found have infinite diameter:

Proof. Let A be the z-axis and B be the set

{(z,1/z) | z > 0}

The functions z — 0 and  — % are continuous on (0,0) so A and B are

closed by chapter 2, problem 15.
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(10)

Now, let
{a"}z)zl = (’I’L,O), {bn}'rozozl = (TL, l/n)
Then a, € A and b,, € B and d(ay,b,) = % and thusly,

dAB) <L, wn
n

Consequently, d(A, B) = 0. Both sets clearly have infinite diameter. O

We show that if A is a closed subset of X, then any map f: A — E™ can
be extended over X:

Proof. The is the Tietze extension theorem applied component-wise. O]
We find a map from E! — {0} to E* which cannot be extended over E':

Proof. Let f(z) = 1/z. Then f is continuous on E! — {0} by Theorem 2.9
(b) because f~! of an open interval is an open interval, or the union of two
open intervals. Now suppose g extends f to all of E. Let a, = % Then
an — 0. Thus g(a,) — ¢(0). But g(an) = f(a,) = n — . Thus no such g
can exist. O

This is left to the reader as an exercise.

Given a map f : X — E**! — {0} we find a map g : X — S™ which agrees
with f on the set f=1(S™):

Proof. Let h : E*! — {0} — S™ be given by
1

Vi ——vVv
vl

Then h is continuous and h is the identity on S™. Let g = ho f. Then g is
continuous and agrees with f on f~1(S™). O

If X is a metric space and A closed in X, we show that a map f: A — S"
can always be extended over a meighborhood of A, in other words over a
subset of X which is a neighborhood of each point of A. (Think of S™ as a
subspace of E"*! and extend f to a map of X into E"T!. now use Problem
35.):

Proof. Following the hint we think of S™ as a subspace of E"*!. Then
f=(1,...,fn) and
fi=piolf,

where p; is the i-th projection. The solution to problem 32 shows p; is
continuous, so that each f; is continuous.
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By theorem (2.15), each component f; can be extended to a function g; on
all of X such that g; agrees with f; on A. Then g = (g1,...,9n) extends f
on A to a map from X to E**1.

The same argument as in problem 32 shows g is continuous. Note that
gHO)NnA=

because f maps A into S™. And g7'(0) is a closed set in X (theorem
(2.9(e))).

Thus by problem 28 we can find disjoint open sets U and V in X such that
AcU, g'ocVv

Let h be the map from problem 35. Then h o g is well-defined as long as
g(z) # 0. Thus h o g is well-defined on U. And

hOg|U

agrees with f on A, since h is the identity on S™. O



Chapter 3

Compactness and
Connectedness

3.1 Closed and Bounded Subsets of E"

There are not exercises for this section.

3.2 The Heine-Borel Theorem

(1)
(2)

This is left to the reader as an exercise.

Let S 2.5 2.5 2 .- be a nested sequence of squares in the plane whose
diameters tend to zero as we proceed along the sequence. We prove that
the intersection of all these squares consists of exactly one point:

Proof. Each S,, is a square so is of the form I, x J,, for closed one-dimensional
intervals. And S,, © S,,41 means I, © I,,;1 and J, D J,41. Thus we can
apply the one-dimensional argument given above to the I,,’s and J,,’s. We
get a sequence of points x, converging to p and y, converging to g. So
(Zn,yn) € Sy therefore converges to (p,q) which must be in S, for all n
since S, is closed, so (p,q) € ﬂf:1 Sp. Similarly the one-dimensional argu-
ment shows there can be only a unique x and y coordinate of anything in
N, Sn. Thus,
0

Sy = {(pa q)}

n=1

O

We use the Heine-Borel theorem to show that an infinite subset of a closed
interval must have a limit point:

41
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Proof. By ’infinite’, we assume that the author means that the cardinality
of the set is non-finite and countable. We proceed by contradiction:

Let C be the closed interval. Suppose that such an infinite subset, A, of C'
does not have any limit points. Then, for each x € C, there is an open set
O, in C, such that z € O, and O, n (A — {z}) = &. In addition,

0cU0z

zeC

S0, U,ec O is an open cover of C, and consequently, has a finite subcover:

F= |J 0.

ie{l,;i...,N}
Then, A c F and O,, n A = x; for each i. Thus,
A=FnA={x,z9,...,zN}

A contradiction. O
We rephrase the definition of compactness in terms of closed Setsﬂ

Proof. We claim that X is compact if, and only if, for every collection
{C;}ier of closed sets in X with the FIP, (), C; # . Indeed:

( = ) We proceed by contradiction: Let X be compact, and let
{Ci}icr be a collection of closed sets with the FIP, such that, (), C; =

.
Then, by De-Morgan’s Laws, as Cf is open,

LZ_JCE—(OOZ-)C—@C—X

Thus, there exists a finite subcover,

{Clcl ’ CC

27 °

.G Y

with X =, Cf . And, so,
X =g = (Uka)c = ﬂOik #*
k k

However, this is clearly a contradiction. Thus, (), C; # &.

!Definition; The finite intersection propert (FIP): Let F be a collection of sets. Then, F

has the finite intersection property if whenever Fy, Fs,...,Fp,e F, Fi nFan---n F, # .
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(<= ) Let F = {O;}ier be an open cover of X. Then, {Of}s is a
collection of closed sets, such that

Oc’)g: (uoi)c—xc—@

Thus, there exists a finite set {07, 05, ..., O}, such that

But then,

(N )= U o=(xy=x

k=1,2,...,n k=1,2,...,n

So, F contains a finite subcover.

3.3 Properties of Compact Spaces
(1) We determine which of the following are compact:
e QcE:

Proof. By theorem (3.9), a compact subset of E is closed and bounded,
Q is neither. O]

e S™ with a finite number of points removed:

Proof. S™ — {p1,...pn} is not compact; by theorem (3.9), a compact
subset of R"*! is closed and bounded. Since S™ lives in R"*!, the
theorem applies. S™ is bounded, but S™ — {p1,...,pn} is not closed,
because one can find a sequence in S™ that converges to any of the
removed points. O

e the torus with an open disc removed:

Proof. Yes, the torus with an open disc removed is compact. The
torus can be embedded in R3 as a bounded subset. And since we are
removing an open disc, what remains is a closed subset of the torus
and therefore (by chapter 2, problem 7, page 31) is a closed subset of
R3. Therefore, by theorem (3.9), it is compact. O

e the Klein Bottle:
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Proof. The Klein bottle is compact. It is the continuous image of a
closed finite rectangle. By theorem (3.9) a closed finite rectangle is
compact. So by theorem (3.4) the Klein bottle is compact. Alter-
natively, the Klein bottle can be embedded into R* as a closed and
bounded set. Therefore, it is compact. O

e the Mobius strip with its boundary circles removed:

Proof. The Mobius strip with its boundary circle removed is not com-
pact. Think of the strip as a subset of R3. Then one can find a
sequence of points in the strip that converge to a point on the bound-
ary, which has been removed. Since compact sets must be closed in
R3, the Mobius with boundary removed cannot be compact. O

We show that the Hausdorff condition cannot be relaxed in theorem (3.7):

Proof. Let X = {a,b} a set with two points. Let X; be X with the discrete
topology (so every subset is open). Let X be X with the indiscreet topology
(in other words the only open sets are X and ¢J. Then X5 is not Hausdorff.
The function f: X; — X5 given by f(a) = a, f(b) = b is one-to-one, onto
and continuous. But f~! is not continuous, so f is not a homeomorphism.

O
We show that Lebesgue’s Lemma, fails for E*:

Proof. Let B(0, 1) be the open ball of radius one, centered around the origin.
And, for each p # 0 in E?, let B(p,lpll.) be the open ball centered at p
and radius Y/||p||.. Now, let § > 0, and let n € N be such that

1 4
— < —
n 3
Then, the open ball of radius 24/3 around the point (n,0) is not contained
in any B(p, /lpll2)- O

Lindelof’s Theorem: We show that if X has a countable base for its topol-
ogy, T, then any open cover of X contains a countable subcover:

Proof. Suppose that F is a countable base for the topology on (X, 7). Then,
F ={F,F,...,F,,...}. Let {O4}s be an open cover of X. Then, as F

is a base for T,
Uo-Ur

el

In addition, for each x € X there exists n € I, and «g, such that

zeF,cO
o
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Thus, let
{Fnk }k
be the collection of all such F),, , as described above. Then, clearly
JFu =X
k

and, for each F,,, € {F),, }, there is an a,,, such that

F,,c O

Qny,

Consequently,

{ O}

ank

is a subcover of {Oq}q. Finally, as I is countable, so is {F},, } and {O,,,, }-

(5) This is shown by an extra lemma, and the fact that compact subsets of T
spaces are closed.

(6) Let A be a compact subset of a metric space (X,d). We show,

e that the diameter of A, Diam A, is equal to d(z,y) for some z,y € A:

Proof. By lemma (2.13), for a fixed y € A, the function defined by
f(z) = d(z,{y}) is continuous. By theorem 3.10, f is bounded, and
obtains its bounds on A; for some xg € A, d(z, {y}) < d(xo, {y}) for all
x € A. Further, ranging over y € A, we see that

Diam A = d(xo,y0), Zo,Yo € A.

e that given z € X, d(x, A) = d(z,y), for some y € A:
Proof. This is lemma (2.13), and the fact that A is compact. O
e that given a closed subset B, disjoint from A, that d(A, B) > 0:

Proof. Suppose, to the contrary, that d(A, B) = 0. Then, by definition,
we have

inf d(z,y) =d(A,B) =0

reA

yeB
An application of the above shows that, actually, d(A, B) = 0 = d(a, b)

for some a € A, and b € B. But then, by properties of metrics spaces,
we have a = b; a contraction, as An B = (. O
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We find an example of a topological space (X,7) and a compact subset
whose closure is not compact:

Proof. Consider R = X, and 7 = {R,, (—a,a) : a > 0}. Then, {0} is
clearly compact in X, and it is closed. But, {0} = R as each (—a,a)° =
(=00, —a] u [a,0) and 0 ¢ (—o0, —a] U [a, ). O

We show that the real numbers with the finite complement topology are
compact, and that the reals with the half-open topology is not compact:

Proof. FC: The real numbers with finite-complement topology is compact.
Let 8 = {U,} be an open cover. Then let U,, be an element of 8. Then
there are only a finite number n of points that are not in U,,. We only need
n more elements of 8 to cover everything.

HO: The real numbers with the half-open interval topology is not compact.
Let 8 be the open cover {[n,n + 1) | n € Z}. Then 8 clearly does not have
a finite subcover. O

Let f : X — Y be a closed map such that f~1(y), y € Y is a compact subset
of X. We show that f~![K] is compact whenever K is compact in Y:

Proof. This follows from the fact that

P = U = U R

keK keK
and the fact that the union of finite sets is finite. O

This is left to the reader as an exercise. Hint: Use the fact that a subset of
a Ty space is Ty, and theorem 3.7. Show that f: X — f(X) is onto.

The proof of the first part is left to the reader. However, we show

e that any closed subset of a locally compact space is locally compact:

Proof. Let (X,7) be the locally compact space, and A = X, with
A = A. Let pe A Then, as X is locally compact, there exists a
compact neighbourhood

KxcX, peKx

Then, via the subspace topology, Kx n A is a neighbourhood of p in
A.

Next, let F be an open cover of Kx n A. Then, we see that F U{A°} is
an open cover of Kx. Further, there exists a finite subcover F; < F,
such that 1 —{A°} is a finite subcover of

KxﬁAC{:—{AC}

and so Kx n A is a compact neighbourhood of p in A. O
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(12)

e that Q is not locally compact (as a subset of R):

Proof. Suppose, to the contrary, that Q is locally compact. Then,
let A € Q be a compact neighbourhood. Then, there exists an open
interval I R, with

InQcA

Now, let x € I, where x is irrational. As Q is dense in R, there exists
a sequence of rationals in Q N A with,

{qn}_)m¢A> n— o

But then, A is not closed. Thus, by theorem (3.5), it cannot be com-
pact. O]

e that local compactness is preserved under homeomorphism:

Proof. Suppose that f: X — Y is a homeomorphism, and that X is
locally compact. We want to show that Y is locally compact.

Let p € Y. Then, there is a locally compact neighbourhood K, of
f~(p) in X. Now, let F be an open cover of f({K,}). Then,

F={/'UF): FeF)

is an open cover of K, in X. It follows that F; has a finite subcover,
Fo, and that

(FUF}) : Fe F)

is a finite subcover for f({K,}) c Y. O

Suppose that X is locally compact and Hausdorff. Given x € X, and a
neighbourhood O of z, we find a compact neighbourhood K of x which is
contained in O:

Proof. Let O be as given. Then, since X is locally compact, there exists a
compact neighbourhood V', such that z € V. By the subspace topology, it
follows that x € V. n O and O nV is open in V. Further, as V is compact,
it is closed, by theorem 3.6. O

Let X be a locally compact Hausdorff space which is not compact. Form
a new space by adding one extra point, usually denoted by oo, to X and
taking the open sets of X U {oo} to be those of X together with sets of the
form {X — K} u {00}, where K is a compact subset of . We check the
axioms for a topology, and show that X U {c0} is a compact Hausdorff space
which contains X as a dense subset:
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Proof. Let § be the topology on X. Define
B'=Bu{Uu{w}|Uc X and U is compact }
Clearly, @ € 8’ and since ¥ is compact,
X u{wotep

It remains to show 3 is closed with respect to arbitrary unions and finite
intersection:

e Arbitrary Unions: Let
{Ustacac B c f'
We must show UaeaU, € B8'; Write
A=A U A

ac A= o0¢ U,

a€ Ay = w0el,

Then,
{Ua}aeA = {Ua}aEAl U {Ua}aeAg

If A = &, then
JUa= | UaeBcp

aeA acA,

If A; + &, then we must show that

(ye)

For o € Ay, US is compact: Since X is Hausdorff U¢ is closed (theorem
(3.6). Thus
(v

OtEAQ

is compact.

is closed. Now, fix any o/ € Ay. Then Maea,US is a closed subset of
U¢, and so is compact (theorem 3.5). Thus

(0%
(&
a€As
is compact. Thus,

(ys) - (0 -=)n(n =)

, which is a closed subset of the compact set N,ea,US and therefore is
compact.
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e Finite intersections: Now, let

{Ua}aeA - 6/
be a finite subset of 8’. As above, decompose A into A; U Ay. If
A1 # J, then
w € (ﬂ Ua>
aeA
And,

is a finite union of compact sets and therefore compact.

IfA] #@, ‘hen
aEA

(0e) - (o) (y =)

These are all finite unions, thus this last expression is the union of
a closed and a compact and is therefore closed. Thus ((),c4 Ua) is
closed. Thus ((,c4 Ua) is open.

X u {oo} is compact: Let {U,} be an open cover of X. Then 3 o such that
0 € Uy,. Since U§ is compact, and {U,} is an open cover of U , there
are Uy,,...,U,, such that

C
Ugy SUay v -0 Uq,

But, then
Uay,Uays- -, Ua,

is an open cover of X u {oo} and so we have found a finite subcover.

We now show X u {oo} is Hausdorff. Let z,y € X u {o0}. If 2,y € X then
since X itself is Hausdorff we know there are open sets that separate them.
So suppose without loss of generality that y = 0. Since X is locally compact
there is an open set U € X and a compact set K € X with x e U € K.
Then oo € K€ is an open set in X u {00} and K°nU = .

It remains to show X is dense in X u {co}. The only way this is not true
is if {o0} is an open set. But {00} = X which was assumed to be not
compact. O

(14) We prove that E" u{oo} is homeomorphic to S™:
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Proof. As before EI, there exists a homeomorphism
h:E"— S"—{p}, peS”

Clearly, the one point compactification of E" is E™ u{oo}. And further, the
one point compactification of S™ — {p} is S™.

As both these spaces are 15, it follows by an extra lemma that
E™ U {0} ~ S

O

(15) Let X, and Y be locally compact Hausdorff spaces, and let f : X — Y

3.

be an onto map. We show that f extends to a map from X u {oo} onto
Y U {00}, if and only if, f~![K] is compact for each compact subset K of
Y. Further, we deduce that if X and Y are homeomorphic spaces, then
so are their one-point compactifications and find two spaces which are not
homeomorphic, but have homeomorphic one-point compactifications:

Proof. This problem was first shown as an extra lemma. Thus, we find two
spaces which are note homeomorphic but have homeomorphic one point
compactifications:

Consider
X1 =[0,1) v (1/2,1] X2 =[0,1)

and the result follows. O

4 Product Spaces

(1) This is left to the reader as an exercise.

(2) Suppose that A, B are compact in X,Y’, respectively. We show that if W is

a neighbourhood of A x B in X x Y, that there exists a neighbourhood U
of A in X, and a neighbourhood V of B in Y, such that

UxVcW

Proof. Since A, B are compact, by theorem (3.15), A x B is compact. As
this is the case, there exists a finite set of (a,b), a € A, b € B, with neigh-
bourhoods

n

Us, X Vi, Ugy X Voo o .., Uq,, x Vi

such that
Ax Bc U Ua, X W,
i

2reference this
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Now, for each a € A, let

Ea: ﬁ Uam
Ua,;
aGU,,,i
and
Fo= (]
Vbi
bGVbi

for each b € B. Then, as {U,, x V;,}; is finite,
{E; x F,:x€ A,ye B}
is finite. Further, we see that

AXBCUEaXFbIUXV
a,b

Consequently, U x V < W, by construction. O]

(3) We prove that

e the product of two second-countable spaces is second-countable:

Proof. Let X,Y be second countable spaces. Then, as the finite union
of countable sets is countable, it follows that the topology on X x Y
has a countable base. O

e the product of two separable spaces is separable:

Proof. Suppose that X,Y are separable. Then, they contain a count-
able dense subset, A ¢ X, B ¢ Y. From set theory, it follows that
A x B is countable. Thus, we show that A x B =X xY:

Indeed; from exercise twenty on page fifty-five, we have

AxB=AxB=XxY

(4) We prove that [0,1) x [0,1) ~ [0,1] x [0,1):
Proof. As previously show, there exists some h : [0,1) x [0,1) — D2,
D? = D? —{x = (z1,22) € S* : 21 > 0 Az > 0},
a homeomorphism. Similarly, under the same map, h : [0,1] x [0,1) — D3,

D2 = D? —{x = (x1,29) € S* : 25 > V/2/2},
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is a homeomorphism. But, {z = (z1,22) € S' : 23 > +/2/2} = B, {z =
(v1,72) € St : w1 > 0 A 29 > 0} = A are open in S*, and so homeomorphic
via, say, h'.

Consequently,
Sl —A ~p Sl —B

But then,
D? =Int D* U (S* — A) ~po; Int D* U (S* — B) = D3
It follows that
[0,1) x [0,1) ~;, D? ~ D2 ~;, [0,1] x [0,1)

O

Let zg € X and yp € Y. We prove that the functions f : X - X x Y,
g:Y — X xY defined by f(z) = (x,y0), 9(y) = (z0,y) are embeddings (as
defined in problem 14):

Proof. By theorem (3.13), f is an continuous iff p; o f and ps o f are contin-
uous. Thus, since p; o f(x) = z (the identity function) and ps o f(x) = yo
(a constant function), it follows that f is continuous. Now f is clearly
one-to-one and onto its image

f(X)c X xY
Note that pi|¢(x) is the inverse of f on f(X). Since p; is continuous, it

follows that pi|f(x) is continuous on f(X). Thus f is a homeomorphism.
The proof that ¢ is a homeomorphism is basically identical. O

The first part is trivial. So, we show that X is Hausdorff if, and only if,
A({X}) is closed in X x X:

Proof. (= ) Suppose that X is T5. We show that A({X})¢ is open
in X x X. Now, for (z,y) ¢ A({X}), we have that there exists open
sets, U, Uy, such that

z € Uy, yEUya Umey:@

Now, let U, x Uy, = W, which is open in X x X. If pe W n A({X}),
then p e W, and so U, n U, # J. Thus,

W c A({X})°

and so A({X}) is closed.
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(7)

(®)

( <= ) Suppose that A({X}) is closed in X x X. Now, if (z,y) ¢
A({X}), then (x,y) € A({X})°, which is open. And so, by definition
of the topology on X x X, there exist open sets U, V', such that

(r,y) e U xV c A({X})°

But, then
(UxV)nA({X}) = @,

implies U n'V = &, by set theory.
O

This is left to the reader as an exercise. Hint: Consider f : RT™ — R, given
by f(z) = 1 and use the sequential criterion for closure.

Given a countable number of spaces X1, Xo, ..., a typical point of the prod-
uct I1X; will be written = (21, 22, ...). The product topology on I1.X; is the
smallest topology for which all of the projections p; : IIX; — X;, p;(z) = a4,
are continuous. We construct a base for this topology from the open sets of
the spaces X1, Xo,...:

Proof. Define the base § for a topology on I1.X; by
B=A{T}u{U1 xUzx---|U; € X;}
is open, and U; = X, for all but finitely many ¢}. Clearly,
Jep IX;ep

It is also obvious that S is closed under finite intersection since

(((4a x B) = (()4a) x B

[

Now let U < X;. Then,
p;l(U>=X1><---><XZ‘,1XUXX,L‘Jrl XXi+2X"'E/B

Thus, p; is continuous.

Now, suppose B is the smallest topology for which p; is continuous. Then
for U € X;,

p;l(U):Xl><-'~XXi_1XUXXi+1><Xi+2><--'

must be in B. Since any element of 3 is a finite intersection of such sets,
it follows that 8 < B. Since B is the smallest topology for which p; is
continuous for all ¢, and the topology generated by § is contained in B, it
must be that the topology generated by g equals B. O
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(9) This is left to the reader as an exercise. Hint: Consider the function f :

R* — R given by f(z) = Tha-

(10) We show that

e the box topology contains the product topology:
Proof. As X, is open in (X;, 7;), the result follows. O

e the box topology and the product topology are equal if, and only if,
X is an indiscreet space for all but finitely man values of i:

Proof. If U; = &, for any i, then

[[xi=o

And, so the only sets of the form
U1 X UQ X ...

which are non-empty, are those which have U; = X for all but finitely
many ¢. O

3.5 Connectedness

(1) Let X = {(a,b) e E* : a € Qvb € Q}. We show that X with the induced
topology is connected:

Proof. We seek to apply theorem (3.25), on page fifty-eight. Indeed, for
each g € Q, let
2
Xo={(a,b)eE:a=qgvb=gq}

Then clearly
Xq=A4,0 B,

where A, = {(a,b) € E* : a = ¢,be E}, B, = {(a,b) e E* : a € Evb = ¢}.
Further, for each ¢ € Q,
Ay =E =B,

So, A4, B, are connected, and as A, n B, = {(¢q,q)}, X, is connect by
theorem (3.25).

For t,q € Q, we have
Xen Xg=A{(q.0),(t,0)} # I
and so, another application of 3.25 shows that
x=1Jx,
q€Q

is connected. O
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(2)

()

Give the real numbers the finite-complement topology. We determine the
connected components of the resulting space, and answer the same question
for the half-open interval topology:

Proof.

e FC: The entire space is connected, since no set can be both open and
closed.

e HO: The space is totally disconnected. Let z < y. Then by chapter
2, problem 11 every set [a,b) is both open and closed. Thus, [z,y)
contains x and not y, and [z,y) and [z,y)¢ are both open. Thus, z
and y are not in the same connected component. Since xz and y are
arbitrary, connected components cannot contain more than one point.

O

If X has only a finite number of components, we show that each component
is both open and closed and find a space none of whose components are
open sets:

Proof. X = Cy u---u (), a disjoint union of connected components. By
thereom (3.27), each C; is closed. Since a finite union of closed sets is closed,
X — C; = uj4;Cj is closed. Thus,

o=(ye)

The space Q with the natural metric topology is totally disconnected, but
points in Q are not open sets. O

is open.

(Intermediate Value Theorem) We show that if f : [a,b] — E is a map such
that f(a) < 0 and f(b) > 0, then there exists some ¢ € [a,b] for which

fle)=0:

Proof. By theorem (3.21), page fifty-eight, f([a,b]) < E is connected. By
theorem (3.19), page fifty-seven, f([a,b]) is an interval. In particular,
f([a,0]) = [f(d), f(V)], where f(a’), f(b'), are the minimum and maxi-
mum of f on [a,b]. Thus, [£(a), f(5)] < [f(a'), f(¥)], and 0 € [f(a), ()]

O

Thus, there exists ¢ € [a,b], f(c) = 0.

We show that

e E" is locally connected:



56

CHAPTER 3. COMPACTNESS AND CONNECTEDNESS

Proof. As has been shown,
{Il XIQ Xoee XInIIZ'ET]E}

is a base for the topology in E™. Thus, if z € O, for some open
neighbourhood @, in E", there exists

I=I1 xIyx---xI,cO

x

And, as each I; is connected, it follows by exercise 3.20, that I is
connected. O

X ={0} u {1/n: n e N} is not locally connected:
Proof. Let O be an open neighbourhood of 0 € X, which is connected.

But then, by theorem (3.19), O is an interval. However, X clearly
contains no intervals. O

(6) We show that local connectedness is preserved by a homeomorphism, but

need not be preserved by a continuous function:

Proof. The first part of this proof is direct. For the second part, consider
Y = {0} u{l/n: n € N} as above, and X = Z" as subspaces of E. Let
f : X < Y be the canonical map. Then, f is clearly continuous, but we
have previously show that Y is not locally compact. O

We show that (X, 7) is locally connected, if, and only if every component
of each open subset of X is an open set:

Proof. ( = ): Suppose that X is connected, and let O be an open set

in X, and C a (maximal) connected component of O. Then, for some
x € C, there exists a connected open set V,, such that

reV,cO

But, since C' is maximally connected, V, € C. Then,

c=Jw

zeC

and so C' is open.

(<= ): Now, let z € X, and O an open set containing x. Then, the
components of O are open. Thus, let V be a component such that
r €V < O. But then, V is open, closed, and so connected. Thus, X
is locally connected.

O
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3.6 Joining Points by Paths

(1)

(6)

We show that the continuous image of a path-connected space is path-
connected:

Proof. Without loss of generality, suppose that f: X — Y = f(X) is onto,
and X is path-connected. Then, for

y1 ="M (x1), y2=f"(x2)

in Y, there exists a path i from z; to x3. Thus, foh is the desired path. [

This is left to the reader as an exercise. Hint: Consider the case x # —y,
and use the straight-line homotopy composed with the canonical map. In
the case where x = —y, pick a third point which is not equal and apply the
above technique.

We prove that the product of two path-connected spaces is path-connected:

Proof. This follows directly from the definition of the product topology and
set theory. O

If A and B are path-connected subsets of a space (X,7), and A n B is
non-empty, we show that A U B is path-connected:

Proof. Suppose, without loss of generality, that
z,yeAuB, z€A, x€B

Pick ¢ € A n B, and by assumption, there exists paths +; in A, 7, in B,
which connect z to ¢, and ¢ to y, respectively.

It follows that =7 o 7o is the desired path. O

We find a path-connected subset of a space whose closure is not path-
connected:

Proof. As the comments on page sixty-two point out, letting

Z = {(z,sin(w/x) : x € H-%}

we see
Z=YuZ=X

We show that any indiscreet space is path-connected:
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Proof. As any function on an indiscreet space is continuous, the result fol-
lows. O

We determine whether or not the space shown in fig. 3.4, page sixty-three,
is locally path-connected, and covert X = {0} v {1/n:n =1,2,...} into a
subspace off E? which is path-connected but not locally path-connected:

Proof. Tt is not the case that fig. 3.4 is locally path-connect. To see this,
we note that any path at the origin must contain points from Y and Z. As
the comments on page sixty-two point out, the result follows.

For the second part of the proof, let
XO:{(Ovy):ye[Ovl]}v Xn:{(l/nvy)ye[ovl]}

Further, let Y = {(z,0) : z € [0,1]} and

X=Yu (LnJXn)

Then, X is path connected as Y n X,, # &, for all n.

To see that X is not path connected, let p € (0,1), and consider O < B(p,1)
be open. Then, OnY = ¢, so OnX is a collection of line segments
separate from each other. So, V' n X is not path connected. O

We prove that a space which is connected, and locally path-connected is
path-connected:

Proof. Let x € X. And let O, be the set of all y € X such that y is
path-connected to z; then, O, # J. We claim that O, = X.

Indeed; as O, is a maximally connected component it is open, by extra
lemmaﬂ Similarly, O¢ is open. Thus, @, is both open and closed. There-

x

fore, as X is connected, O, = X. This completes the proof. O

3cite this



Chapter 4

Identification Spaces

4.1 Constructing the Mobius Strip

There are no exercises listed for this section.

4.2 The Identification Topology

(1)

We check that the three descriptions of R P" all lead to the same space:

Proof. We first note that the canonical construction of RP" is formed via
the relation
T~ A VYA#0, AeR

As X can always be chosen so that ||z - A|| = 1, we consider such A as
equivalence class representatives.

To see that (a), (b) are equivalent, let h : E"™' — E/ ~% be the aforemen-
tioned quotient map and i : S — E™*! be the natural embedding. Then,
as S™ is compact, E/ ~g is Hausdorfl, it follows by an extra lemma, and
corollary (4.4), that hoi is an identification map. So, (a), (b) are equivalent.

To see that (b) and (c) are equivalent, let ¢ : S® — B™ be the natural
embedding, and ¢ is quotient map given in (c). Then, again, by corollary
(4.4), g o i is an identification map. Thus, (b) and (c) are equivalent. O

We determine which space do we obtain if we take a Mobius strip and
identify its boundary circle to a point:

Proof. We obtain the projective plane R P2. To see this, let R be a rectangle
as in Fig. 4.1 (page 66). Instead of first identifying the right and left edges to
get a Mobius and then collapsing the boundary circle, we first collapse the
top and bottom borders to two points a and b, then identify the (image of)
the right and left edges as they would have been identified to form a Mobius

99
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from R. This operation identifies the two points a and b. So after these two
identifications we end up with the same space. So by this argument we can
do the identifications in the opposite order. Proceeding in this way, we first
collapse the top horizontal border to one point and the bottom border to
another point. From this identification we get a space homeomorphic to a
disc D. The identification map f : R — D can be seen as taking the left
border of R to the left semi-circle of the boundary of D and the right border
to the right semi-circle of the boundary of D. Then we follow f with the
identification map from D to RP? given in Problem 1 above. The result
is an identification map from D to RP? that (since it identifies antipodal
points on the boundary) identifies the same two points on the two boundary
semicircles that came from two points in R that would be identified if we
formed the Mobius first. Thus the identification space is homeomorphic to
the image R P2 O

Let f : X — Y be an identification map, let A be a subspace of X and give
f(A) the induced topology from Y. We show that the restriction f|4 : A —
f(A) need not be an identification map:

Proof. Let X =[0,1] and Y = S* = C and let f: X — Y be given by

T — 6271'19:

Then, by corollary (4.4), f is an identification map because X is compact
and Y is Hausdorff.

Let A = [0,1). Then, f|a(4) =Y, but f|a does not identify any points.
Thus, if f|4 were an identification map it would (by theorem (4.2)) induce

a homeomorphism from A to Y. But we know f is not a homeomorphis
O

With the terminology from the previous problem, we show that if A is open
in X, and if f is an open map then f|4 : A — f(A) is an identification map:

Proof. This is theorem (4.3), page sixty-seven. O
Let X denote the union of all circles of the form
1\2 1\2
(x——) +y? = (—) , neN
n n
with the induced topology. Let Y denote the identification space obtained

from the real line b identifying all the integers to a single point. We show
that X 2Y:

ISee section 1.4, example 3, page 14
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(7)
®)

Proof. We claim that X is compact, but Y is not.
Indeed; To show that X is compact, first let {O4}o be an open cover of X.
Then, there exists some aq, such that

(0.0} 0

Thus, as O, is an open set containing {(0,0)}, there exists some ng € N
for which

132
(m—g> +y? < B(O), n=ng

@o

where B(Q,,) denotes the solid ball with boundary O,,. Consequently,
only finitely many circles are outside B(O,,). Thus, compactness follows.

To show that Y is not compact, consider the open cover of R given by
{(n—1/2,n+1+1/2)}pez

There is clearly no finite subcover of R. This completes the proof. O

We given an example of an identification map which is neither open nor
closed:

Proof. Let m; : RxR — R be projection onto the first coordinate and
consider

A={(z,y):2=20vy=0cRxR
We show that 1|4 is a quotient map which is neither open nor closed:

Indeed; We know that m; is a quotient map, as it send open sets to open
sets. In addition, |4 is obviously saturated and so a quotient map. To
see that it is neither open nor closed, consider

C={(z,1/z) : x e R—{0}}

which we have previously shown is closed. Then, clearly C' n A is clearly
closed in A, but
m1|a[C N A] = (0, 0)

which is open. And,
V=AnRx(-1,0))

is open in A, but
m|a[V] = [0, )

is closed in E. This proves the result. O

This is left to the reader as an exercise.

Suppose that X is a compact T space. We show that
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e the cone on X is homeomorphism to the one-point compactification of

X % [0,1):
Proof. Note that, as X is compact, X x [0, 1] is compact. Further,
X x[0,1] =X x[0,1) u X x {1}

As the one point compactification of X x[0,1) is X x[0,1] and X x {1}
is compact in X x [0, 1], the result follows. O

if A is closed in X, then X /A is homeomorphic to the one-point com-
pactification of X — A:

Proof. Let Y = X—Au{o} be the one point compactification of X —A.
Further, let P be the image of A in X /A, under the identification map

i: X > X/A
We show that the function h: X/A — Y given by

h(x):{x reX - A
o zelP

is a homeomorphism. We apply theorem (3.7) and claim that hoi is
continuous.

Indeed; If O is open in Y and o0 ¢ O, then O ¢ X — A, and so,
(hoi) ™ (O)=0c X

is open. Now, if o0 € O, then O° is compact in X — A by definition
and is closed. Thus, (hoi)~1(O°) is closed in X. Consequently,

c

(hoi)~H(0)" = (hoi)~H(O)

is open in X. So, h is continuous.

As X — Au{w}is Tr and X — A compact (it is the continuous image
under i of X), h is a homeomorphism by theorem (3.7), page forty-
eight. This completes the proof. O

(9) Let f: X — X' be a continuous function and suppose that we have parti-

tions &2, 2’ of X and X' respectively, such that if two points of X lie in the
same member of P, their images under f lie in the same member of &2/, We
show that if Y, Y’ are the identification spaces given by these partitions,
that f induces a map f' : Y — Y, and that if f is an identification map
then so is f':
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(10)

Proof. Let m: X - Y, ' : X’ — Y’ be the given identification maps. We
show that f induces a map f':Y — Y.

Define f': Y — Y’ by f'(xn(P)) = «'(f(P)), for all P € &. To show that
f’ is a map, we first show that it is well-defined. For all P € &2, there
exists P’ € &, such that f(P) < P’, by assumption. The fact that f’ is
well-defined follows and everywhere defined is clear.

To show that f’ is a map, let O be open in Y’. Then, we have

F7HO) = ("o )H7HO) = 1@ TH0)),

which is open as f is continuous. Thus, f’ is a map.

To conclude the proof, we show that if f is an identification map, then so
is f’: Indeed; Let O be open in Y. We claim that f'(QO) is open in Y’. By
definition, if O is open in Y, then as 7 is an identification map, 7~1(0O) is
open in X. Further,

("o forn ' )(0) = (f(r~1(0)) = f'(x(x~1(0))) = f'(0)

and,
FHEH0) = T (F(n1H(0))) = 77H0)

Thus, by definition of identification map, f'(O) is open in Y’. This con-
cludes the proof. O

Let S? be the unit sphere in E? and define f : S? — E* by f(z,y,2) =
(22 —y?, 2y, 2, yz). We show that f induces an embedding of the projective
plane in E4:

Proof. Let X = im(f) < E*. Since E* is Hausdorff and a subspace of a
Hausdorff space is Hausdorff, X is Hausdorff. And S? is compact. Thus
by Corollary 4.4 f : S? — X is an identification map. By the example
“Projective spaces (a)” on page 71, P? is S? with antipodal points identified.
Thus by Theorem 4.2 (a) we will be done if we show f identifies antipodal
points (and no others). It clearly does identify antipodal points, f(x,y,z) =
f(=x,—y,—2). So suppose f(x1,y1,21) = f(x2,y2,22). We must show
(‘Tlayla Zl) = ($27y23 22) or (xlvyla Zl) = (75527 —Y2, 722)' We have

of —yi =23 — v} (4.1)
T1Yy1 = T2Y2 (4.2)
T121 = Ta29 (4.3)
Y121 = Y222 (4.4)

From (3) and (4) it follows that

(2} —97)2t = (23 — y3)7 (4.5)
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case 1: 23—y} # 0.
Combining (1) and (5) we get 27 = 22. Thus 2y = +25. If 21 = 29, then

case a: z1 £ 0. Then (3) and (4) imply =1 = z2 and y1 = ya. If
z1 = —z9 then (3) and (4) imply 21 = —z9 and y; = —yo. Thus either
(z1,91,21) = (%2, Y2, 22) or (1,¥1,21) = (=21, —y1, —21).

case b: z; = 0. Then 22 +y? = 1. So one of x; or y; must be different from
zero. Assume wlog that z; + 0. Now 23 + y? = 1 = 22 + y3 together with
(1) implies 2% = 223. Thus 71 = fx5. If 27 = x5 then (2) implies y; = ya,
thus (z1,y1,21) = (22, Y2, 22). If 21 = —xo then (2) implies y; = —ys, thus
(Ila Y1, Zl) = (*1'2, —Y2, 722)-

R R
case 2: z7 —yi = 0.

Suppose 1 = 0. Then y; = 0, and combining (1) and (2) it follows that
zo = 0 and yo2 = 0. Now if z1 = y; = 0 then necessarily z; = =+1.
Likewise zo = 1. Thus in this case either (z1,y1,21) = (z2,¥2,22) or
(x1,y1,21) = (—21,—y1,—%1). By symmetry, the same thing happens if
y1 =0,z =0o0r y5 = 0.

Therefore we have reduced to the case that none of z1,x2,y1,y2 are zero.
By assumption x; = +y; and from (1) it follows that x9 = +y,. It then
follows from (2) that z; = txs.

case a: 1 = . Then (2) implies y; = yo and (4) implies z; = 2zo. Thus
(1,91, 21) = (22,2, 22).

case b: 1 = —x9. Then (2) implies y; = —y2 and (4) implies z; = —zo.
Thus (21,1, 21) = (=72, —Y2, —22). O

We show that the function f : [0,27] x [0,7] — E° defined by f(z,y) =
(cos z, cos 2y, sin 2y, sin = cos y, sin z sin y) induces an embedding of the Klein
bottle in E°:

Proof. Let Y = [0,27] x [0,7]. Let X = im(f) < E°. Since E° is Haus-
dorff and a subspace of a Hausdorff space is Hausdorff, X is Hausdorff.
And [0,27] x [0, 7] is compact. Thus by Corollary 4.4 f : ¥ — X is an
identification map. We know the Klein bottle can be obtained from Y by
identifying two opposite edges in the same orientation and the other two in
the opposite orientation (see Figure 1.12, page 10).

First note that f identifies all four corners of Y together. So in what follows
we will examine what happens to all of the other points.
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Suppose f(z1,y1) = f(x2,y2). First suppose y1 £ y2 and assume y1,ys €
(0,7). Inspection of the graph of sin(x) tells us that if sin2y; = sin2ys
then one of two cases hold: (i) 0 < 2y1,2y2 < 7 and 2y; = 7 — 2y, or (ii)
T < 2y1,2ys < 27 and 2y; = 37 — 2y3. Now cos(2y;1) = cos(2yz) implies
2y, = 21 — 219, or equivalently y; = m — yo. But this is incompatible with
both (i) and (ii). Thus if we continue to assume y; + ya, it must be that
at least one of y; or yo equals zero or w. Since y; = ™ — s, if y; = 0 then
y2 = 7 and conversely. Thus we have shown that if f(x1,y1) = f(22,y2)
and y1 =+ yo then one of (z1,y1) or (z2,y2) must be on the top side and the
other on the bottom side. In other words {y1, y2} equals {0, 7}. We need to
examine what happens to the z-coordinate of such points.

So suppose f(a,0) = f(b, 7). And suppose 0 < a,b < 2w. We have cosa =
cosb and sina = —sinb (from the first and fourth coordinates of f). From
cosa = cosb we know that either a = b or a = 27 — b. From sina = —sinb
we know that the only one of these that is possible is a = 27 — b (keep in
mind we are assuming here that a and b are strictly between 0 and 27).

Thus the points where f(x1,y1) = f(x2,y2) with y; F yo and z1, 25 € (0, 27)
are exactly the points of the form ((z1,y1), (z2,y2)) = ((z,0), (27 — x, 7))
for some z € (0,27). The only other points on the top or bottom sides are
the corner points which we have already handled.

Suppose now that y; = yo2, and assume x1 # x9. Assume y1,y2 € (0, 7). We
know from the first coordinate of f(xz1,y1) = f(22,y2) that cosz; = coszs.
Since x1 #+ x2, this holds only if 1 = 27 —z5. Now from the fifth coordinate
of f(x1,y1) = f(x2,y2) we also know sinx; = sinxs (substitute yo = y; and
then we can cancel siny; from both sides since we are assuming y; € (0,7)),
which together with x1 = 27w — x5 implies — sin o = sin x5, which implies
sinazo = 0. Thus 25 = 0 or 25 = m. We do not need to further evaluate
the y-coordinates of such points since in this case we have assumed y; = ys.
Thus f identifies points on the opposite vertical sides at the same vertical
height to each other. The only other points on the left or right sides are the
corner points which we have already handled.

In summary we have shown that any points that f identifies to each other
must lie on the boundary of the square; and that f identifies the four corners
of the square to one point; and f identifies points on the top and bottom
sides in pairs, where the point with x-coordinate x on the top is identified
with the point with z-coordinate 2w — x on the bottom; and finally f iden-
tifies points on the left and right sides in pairs, where points with the same
y-coordinate are identified to each other.

It follows that the identification space is the Klein bottle. O

With the notation of problem 11, show that if (2 4+ cosx)cos2y = (2 +
cosz’) cos 2y’ and (2+ cosx)sin2y = (2 + cosa’) sin 2y’, then cosx = cosa’,
cos 2y = cos2y’, and sin 2y = sin 2y’. Deduce that the function g : [0, 27] x
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[0, 7] — E* given by g(z,y) = ((24+cos z) cos 2y, (2+cos z) sin 2y, sin z cos y, sin x sin )
induces an embedding of the Klein bottle in E*:

Proof. Suppose that

(2 + cosx) cos 2y = (2 + cosz’) cos 2y’ (4.1)
(2 + cosz)sin2y = (2 + cos ') sin 2y’ (4.2)
We want to show
cosx = cosx’ (4.3)
cos 2y = cos 2y’ (4.4)
sin 2y = sin 2y’ (4.5)

case 1: {y,y'} n {n/4,3r/4} = &. Then cos2y # 0 and cos2y’ + 0. Thus
we can divide (2) by (1) to get tan2y = tan2y’. Since y,y’ € [0, 7], the
only way this is possible is if y = 3 or (wlog) 2y = 2y + 7. If y =
y' + 7/2 then cos(2y) = — cos(2y’). But then (1) canont hold (remember
{y,v'} n{n/4,3n/4} = &). Thus y = ¢/, from which (4) and (5) obviously
hold and it follows immediately from (1) or (2) that (3) holds.

case 2: {y,y'} n{n/4,3n/4} £ &. If y = 7/4, then (1) implies ¥/ = 7/4
or y = 3n/4. But if ¢y = 37/4 then (2) does not hold. So it must be
y =y = w/4. Then (4) and (5) hold and (2) implies (3). If on the other
hand y = 37/4, then as before (1) implies ¥’ = 7/4 or y' = 3n/4. But if
y' = w/4 then (2) does not hold. So it must be that y = ¢y’ = 37/4. Then
(4) and (5) hold and (2) implies (3).

Now let f be the function defined in Problem 11. Then g is an identification
map for the same reasons f is. And it follows from what we just proved
above that g(z1,y1) = g(x2,y2) < f(x1,y1) = f(x2,y2). Thus the identi-
fication space for g is the same as the identification space for f. Thus the
image of g is homeomorphic to the Klein bottle. O

4.3 Topological Groups

Throughout this section, and the rest of the book, the author assumes that
such groups are 75. Unless otherwise stated, this will be the case throughout
the solutions.

(1) This is left to the reader as an exercise.

(2) Suppose that (G,m, ) is a topological group. We show that

e if H is a subgroup of G, then its closure H is also a subgroup:
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(3)

Proof. Let a,b eﬁﬁ. We claim that a« + b € H. Now, as H ¢ H,
m~t(H) € m~'(H). It follows that as

m Y (H) = {(a,b) :a,be HY = H x H

we have H x H « H x H € m~'(H). But, as H is closed, and m is
continuous, we have L

m(H x H)c H
Similarly we can show this for the inverse function. O

e if H is normal, then so is H:

Proof. We use the characterization for normality give by left and right

co-set equality. As previously show, H < G. As gH = Hg, we have
that
— gH =Hgc gH,and so Hg c gH.
— Similarly, gH < Hg.
O
Let G be a compact Hausdorff space which has the structure of a group.

We show that G is a topological group if the multiplication m : G x G — G
is continuous:

Proof. Let w be the canonical homeomorphism between G and {e} x G, and
p2 projection onto the second coordinate. From the fact that compositions of
homeomorphisms are homeomorphisms, and the comments on page seventy-
five, it follows that L,-2 is a homeomorphism and

p2o(mo Ly—2) =i:G—-G!
is continuous. O

We prove that O(n) is homeomorphic to SO(n) and that they are isomorphic
as topological groups:

Proof. Consider the determinate function restricted to O(n). It follows that
the function g : O(n) — SO(n) x Zs given by

g(X) = (det(X) X, det X)

is 1-1 and onto. We show that g is continuous. Let O be open in SO(n) x Zs.
Then, O = U x {1}, or O = U x {0} for some open U in SO(n). But, as
SO(n) is a subgroup of O(n), U is open in O(n). Thus, as U, —U are open
by extra lemma, it follows that

g U x{1})=-U, ¢ ' (Ux{0})=U
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are open. Thus, ¢ is continuous. As O(n) is compat, and SO(n) x Zs
is Hausdorff, it follows from theorem (3.7), page forty-eight, that g is a
homeomorphism.

To conclude the proof, we note that det XY = det X det Y. O

Let A, B be compact subsets of a topological group. We show that the
product set AB is compact:

Proof. Asm : GxG — G is continuous, and m(A x B) = AB, compactness
follows from theorem (3.4), page forty-seven. O

We show that if U is a neighbourhood of e in a topological group, there is
a neighbourhood V of e fow which VV 1 c U:

Proof. Consider m~!(U). Then, m~*(U) is an open neighbourhood of (e, €)
in G x G. Tt follows from the definition of product topology that m~*(U) =
V x V for some open set V in G. Via L,-2, we have

Ve, , V!

and so,
VxVeVxy!

And, as m is continuous, we have
m(VxV Y =vvVtcU=mm ' (U))
O
Let H be a discrete subgroup of a topological group (G, m,7). We find a

neighbourhood N of e in G such that the translates AN = L,(N), he H
are all disjoint:

Proof. As H is disrete, for some open cover {O,},, each O, contains one
element of H. In particular, there exits some O,,, such that

{e} c O
o
Thus, O,, nH # {e}. By an exercise above, there exists some open N in

G, for which NN—1 < O,,. Now, suppose to the contrary that for some
h,ge H, h# g, hN ngN = (.

Then, there exits some nq,ne € N, for which hny; = gneo, implying that

g_lh = ngnfl eNN1cO
ag

But then, g~ 'h = ngnl_l € Og,,. This implies that
g the OnH = {e};
ag

a contradiction. O
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(®)

(10)

We show that if C' is a compact subset of a topological group (G, m, T), and
if H is a discrete subgroup of G that H n C' is finite:

Proof. By extra lemma, H = H, and as C is compact in a T space, C is
closed. This implies that H n C' < C' is closed, and compact by theorem
(3.5), page forty-seven.

Suppose, to the contrary, that H n C' was not finite. As

|t}

zeC

is an open cover of H n C, no finite set of {z : z € C} could cover H n C,
contradicting the compactness of H n C. O

We prove that every nontrivial discrete subgroup of R is infinite cyclic:

Proof. Let G be a non-trivial discrete subgroup of R. Let g € G, g # 0.
Then, as (G,m,7) is discrete, {0, g} is a neighbourhood of 0, and so, g
generates G (theorem (4.11), page seventy-five). The proof that G = (g) is
clear from the division algorithm. To conclude, we show that |G| = oo:

Suppose, to the contrary, that |G| = p, for some p € N. Then, as G = G,
inf G € G. But then, by the Archimedian Principle, there exists some n € N,
for which ng > inf G, hg € (g). Thus, |G| = 0. O

We prove that every non-trivial discrete subgroup of the circle is finite and
cyclic:

Proof. Let G be a discrete subgroup of S'. Define f : [0,1] — S! by
f(t) = e?™. Then, G is finite, since it is discrete, and compact. It is

easy to see that f~1(G) is a discrete subgroup of R, so is cyclic. Thus,
G = f(f~Y@)) is cyclic. O

Suppose that A, B € O(2), such that det A = 1, det B = —1. We show that
B? = I, and BAB™! = A7', and deduce that every discrete subgroup of
O(2) is either cyclic or dihedral:

+1 0
B= [ 0 +1]
Thus, either way, B2 = I. The fact that BAB™! = A~ is routine. To

complete the proof, we show that every discrete subgroup of O(2) is either
cyclic or dihedral:

Proof. By exhaustion,

From the comments on page seventy-seven, and exercise sixteen, we have
that

0(2) = SO(2) x%;Sl xZ
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Now, let G be a discrete subgroup of S* x Zy. Then, for every X € O(2),
det X # +1, we have

f(X)=8S0(2) x {1} = St x {1} = §*
as in the previous exercise. By the exercise a above, we have that f(X)

must be finite cyclic. In other-words, f~!(f(X)) = X is finite cyclic.

To finish the proof, suppose that X € G was such that det X = —1, without
loss of generality. Now, let K = G nSO(2). Then, K is cyclic and K is the
set of Z € G, such that det Z = 1. Let M be the generator of K. Likewise,
let N be the generator of G — K. Then, as N2 = I, NMN~! = N1,
(M, N) is dihedral.

We claim that G = (M,N); Let L € G — (M,N). Then, L ¢ K, and so
det L = —1. Consequently, det LM N = 1, and so, LM N € K. But then,
L € G; a contradiction. This completes the proof. O

(12) We show that

e if T is an automorphism of the topological group R, that T'(r) = rT'(1),
for any rational r:

Proof. If n € N, then we must have T'(n + z) = T'(n) + T'(z). Further,
as T sends generators to generators, we must have

Tn)=n, Tn+z)=n+T(x)

It follows from the equality

T1) = S T(1/n) = n+ T(1/n)

Ik

=1

that m
T(m/n) =mT(1/n) = ﬁT(l)

Note the change in notation. Thus, as Q is dense in R, it follows
from the sequential criterion for continuity, that 7'(1) = T'(z) for all
xzeR.

e the automorphism group of R is isomorphic to R x Zs:

Proof. We first show that Aut R =~ R x Zy; The map T, : R — R, given
by T.(y) = yz, x # 0 is an automorphism of R, such that T,(1) = x.
Thus, consider f : R—{0} — AutR given by f(z) = 2 = T,(1), for
each T, € AutR, as described above. Then, clearly, f is 1-1 and onto.
Further,

flay) = T,()T,(1) = zy = f(x)f(y)
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To conclude, we show that R —{0} = R x Zy; Consider the map

x

y=0
y=1

x

e
9:RxZ R, g(x,y)—{
—e€

We claim that g is a homeomorphic isomorphism. As e® : R - R is a
homeomorphism from R to R™, it follows that g is a homeomorphism.
To show that it is a isomorhism, we show the homomorphism property:
Without loss of generality, suppose that (z,y), (z',y") € R x Zsy is such
that y = 0, ¥’ = 1; then,

’

g(z,y)g(2',y') = e(—e”) = —e

x4’

=g(z+a'y+y')
This completes the proof. O

(13) We show that the automorphism group of the circle group is isomorphic to
ZQZ

Proof. We first note that the identity map i : S' — S! is the trivial au-
tomorphism. In addition, we have show that the conjugate map given by

i(z) = T is an automorphism. We show that | Aut S| = 2:

We show that if f is any other automorphism, the f =i, or f = 4. Indeed;
first note that, as

S'=U®1) = JUn, Up={ceC:c" =1},

if f € Aut S, then f must send generators to generators. So, consider the
generators of U(1), given by Us, and Us. Then,

U,

lle
lIe

Z

%’ Us 3

Further, for f € Aut S, we must have f(—1) = —1, and thusly,

143, —1+iV3

H— - =5

In which case, f = i and f = i, respectively. Thus, by extra lemma, we
have that | Aut S| = 2 implies Aut U(1) = Zs. O

4.4 Orbit Spaces

(1) We give an action of Z on E x[0, 1] which has the Mobius Strip as an orbit
space:
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Proof. Define 7 : Z x(E x[0,1]) — E?, by

(x + z,9) z€2Z
(x+2z,1—y) z€2Z+1

(2, (2,y)) = {

We show that 7 is a topological group action:

e Clear by construction.
o As, w(0, (z,y)) = (z +0,y) = (x,y), the result follows.

e As the components are continuous, 7 is continuous.

We find an action of Zs on the torus with oribit space the cylinder:

Proof. Consider the cylinder on page eighty. Define 7 : Zy xT — T, by

(g, (,y,2)) = {(”3’ —y,2) g=1

(z,y,2)  g=0
We check that 7 is a T' group action:

e By definition.
e As 0= ee€ Zy, clearly n(0, (z,y, 2)) = (z,y, 2).

e As the components are continuous, 7 is continuous.

To show that w(Zy xT') = C, we note that {(x,y, z) : y € R} is the canonical
cylinder. O

We describe the orbits of the natural action of SO(n) on E" as a group of
linear transformation and identify the orbit space:

Proof. Let re R, r = 0, let

Sr={peE|[p|=r}

Then since SO(n) preserves distances, SO(n) must take S, to itself. Further-
more, the action on S, is transitive, because it is transitive on S?~! < E"
and S, = r-S""!. To see the action on S"~! is transitive, for any vector
v € S"71, it can be put into an orthonormal basis B. Then there is a change
of coordinates matrix M from the standard basis eq, ..., e, to B that takes
e to v. Since both bases are orthonormal, M € O(n). Clearly M can be
chosen to be in SO(n) such that M(e1) = v (if it’s not already in SO(n),
just multiply one of the other e;’s by —1). Since any element of S”~! can
be taken to ej, the action must be transitive. Now if v € E" is arbitrary
(v # 0) then just scale v to be in S"~1, transform within S"~! and scale
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back. The two scaling operations assure that the resulting transformation
has determinant equal to one, and therefore is in SO(n).

Now let r,7" € R, r,v" > 0, r # r’. Since things in SO(n) are length
preserving, an element of SO(n) cannot take an element of S, to an element
of S,». Thus each S, is exactly one orbit (true also if » = 0 since Sy consists
of one point).

Let f : E" — [0,00) be given by f(v) = ||v|. Then f is a continuous
function that identifies each orbit of the action to a single point. Let B be
an open ball in E". Then clearly f(B) is an interval, open in [0, 0). Since
functions respect unions, it follows that f is an open map. By Corollary 4.4
f is an identification map. Thus the identification space is homeomorphic
to the image of f, which is [0, 00). Thus the orbit space of SO(n) on E" is
homeomorphic to [0, o). O

Suppose that 7 : X — X/G is the natural identification map. We show
that

e if O is open in X, then 771 (7(0©)) is the union of the sets g(0), g € G:

Proof. Let a € O and g € G. Since ga is in the same orbit as a,
7(ga) = w(a). Thus 7(g(0)) = 7 (O), for all g € G,

9(0) c 7! (x(0)) VgeG

and,

L 9(0) = 7 (x(0))

geG

Now suppose z € 71 (7(0)); Then 7(z) € 7(O). Thus x is in the same
orbit as some element of O, i.e. = = ga for some g € G and a € O.
Consequently, z € g(O) implies

(x(0) = | 9(0)

geG

Since we have containment in both directions, we can conclude that

1 (x(0)) = | 9(0)

geG

e 7 is an open map:

Proof. Now suppose O is open in X. Recall a set U < X /G is open in
X /G if, and only if, 7~!(U) is open in X. Now, 7~ (7(0)) is a union
of sets of the form ¢g(O) and (since each g induces a homeomorphism
of X) ¢g(O) is open in X, for all g € G. Thus 7~ !(7(O)) is open.
Consequently, 7(O) is open in X/G. O
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e 7 is not necessarily a closed map:

Proof. We will show by counter-example that 7 is not a closed map.
Let Z act on R by translation: 2 > x + z. This orbit space is S'. For
eachn =0,1,2,..., let

N 1
—.n
n+3’ n+2

A, =[n+ ]
So,

Ao = [1/3,1/2]

1 1
Ar=[1+-,1+ =
1 [+47 +3]
1 1

Ay =[2+=,2+ ~
2 [+57 +4]

Let A =], An. Then A is closed in E, but 7(A) = 7((0,1/2]) which
is not a closed subset of S!. O

(5) We show that

e if X is Hausdorfl, it is not necessarily the case that X /G be Hausdorff:
Proof. Consider X = S' x S'. We claim that
X/R

given in example seven, page eighty-three is not T5. Clearly, S' x S1 =
T is Tp. Suppose to the contrary, that for some z,y € X/R, there
exists disjoint neighbourhoods O, O,. But then, as the comments on

page eighty-three point out, Orb z is dense in 7. But then,
OnO#y
Ty
O

e if (X,m,7) is a topological group and G is a closed subgroup acting
on X by left translation, that X /G is Hausdorft:

Proof. Let

C={(z,y)e X xX |z yeG}
and h: X x X — X be the map h(x,y) = v~ 1y. Then h=}(G) = C.
Since G is closed and h is continuous, it follows that C' is closed. Let

f : X — X/G be the identification map. Let g : X x X — X /G x
X /G be the map g(z,y) = (f(z), f(y)). By Problem 29 f is an open



4.4. ORBIT SPACES 75

(6)

map. It follows that g is an open map. Thus by Theorem 4.3 g is
an identification map. Let A be the diagonal in X/G x X/G. Then
g Y(A) = C. Since g is an identification map and C'is closed in X x X
it follows that A is closed in X/G x X/G. By Chapter 3, Problem 25
(page 55) it follows that X /G is Hausdorff.

O

We show that the stabilizer of any point is closed subgroup of G when X is
Hausdorff, and that points in the same orbit have conjugate stabilizers for
any X:

Proof. If g and ¢’ are in the stabilizer of x, then g¢’xz = g = x so gg’ is in
the stabilizer of z. And g 'gx = 1-2 = z, but also g~ tgz = g~ 2. Thus
g 'z = 2 so ¢! is in the stabilizer of z. It follows that the stabilizer of
x is a subgroup of G. Now, let f : G — X be given by f(g) = gx. Then
f is continuous. Since X is Hausdorff, by Theorem 3.6 points are closed
(finite sets are always compact). Thus f~!(z) is closed in X. But f~!(z)
is exactly the stabilizer of . Thus the stabilizer of = is closed in X.

It remains to show points in the same orbit have conjugate stabilizers. Let
x,1y be in the same orbit, so x = gy for some g € G and, let a € stabx. Then

lax =g le =y

9 tagy =g~
— ¢ lag e staby

— g !(stabx)g c staby

Now let a € staby. Then,

gag 'z =gay = gy = x

So,
gag~ ' e stabz = staby < g~ !(staba)g
Since we have set containment in both directions it follows that
g '(stabz)g = staby
[

Suppose that G is compact, X is Hausdorff and that G acts transitively on
X. We show that X is homeomorphic to the orbit space G/(stabilizer of x)
for any = € X:

Proof. Let v € X, f : G — X be given by f(g9) = gx. Since G acts
transitively, f is onto. Since G is compact and X is Hausdorff, f is an iden-
tification map by corollary (4.4). So G*, the identification space associated
to f, is homeomorphic to X.
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Now, suppose f(g1) = f(g2). Then g;'g; € stabz. Consequently, g; is in
the same coset as g with respect to the subgroup (stabilizer of z). Thus
G* is exactly G/(stabilizer of z). O

We prove that the resulting space is homeomorphic to the Lens space L(p, q):
Proof. O

We show that L(2,1) is homeomorphic to R P? and that if p divides ¢ — ¢/,
that L(p, q) is homeomorphic to L(p, ¢):

Proof. Using the definition of L(2,1) on page eighty-two, L(2,1) is an iden-
tification space of S3, the orbit space under the action of Z,. The action
of the generator of Z, is the homeomorphism (zg, z1) — (e™2¢,€™z;) =
(=20,—21). And (—zp,—21) is the antipodal point to (zq,21). Thus, by
example 2 on page eighty, the identification space is exactly P3.

Now suppose p|(q — ¢'). Then ¢ = ¢’ + np for some n € N. Thus,

27q'i/p

. ’ . . . . .
627qu/p _ 6271'(q +np)i/p _ 6271'q i/p+2mnpi/p _ e27rq z/pe27rnz —¢

And, so, the action of Z,, is identical in both cases; the resulting orbit spaces
are identical (and therefore homeomorphic). O
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The Fundamental Group

5.1 Homotopic Maps

Throughout this section ¢ will typically denote the identity map, unless other-
wise stated.

(1)

Let C' denote the unit circle in the plane. Suppose that f : C — C'is a map
which is not homotopic to the identity. We show that f(x) = —z for some
reC:

Proof. Suppose, to the contrary, that for any =z € C, f(x) # —z. Then, we
claim that f ~ ¢. Indeed; as the example on page eighty-nine points out,

(1 —t)f(z) + tg(x)

Fx,t) = 11 —t)f(z) + tg(z)]]

is such that
f=ri=g;

a contradiction. O

With C' as above, we show that the map which takes each point of C' to its
antipodal is homotopic to the identity:

Proof. Consider the matrix

o s

Then, A, = f(z). Thus, define F': C x I — C by

_ |cos(m(1—1t)) —sin(w(1—1)) z
F(z,t) = [Sin(ﬂ(l —t)) cos(m(1—1)) ]

7
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We show that F' is homotopy from f to i:
Clearly,

Further, as F' is the sum of continuous functions, it is continuous. Thus,
f~ri

O
Let D be the disc bounded by C, and parametrize D using polar coordinates.
Let h : D — D be the homeomorphism defined by h(0) = 0, h(r,8) =
(r,0 + 27r). We find a homotopy F, from h to the identity, such that the

functions
P’|D><{t}:l)><{t}—’l)7 te[O,l]

are all homeomorphisms:

Proof. Let i(r,0) = (r,60) the identity map. Define F' : D x I — D by
F((r,0),t) = (r,0 + 2nr(1 —t)). F is given by polynomials in r, 8 and ¢, so
F' is continuous. Further,

F((r,0),0) = h(r,0)
E((r,0),1) = (r,0) = i(r,0)

Thus,
h ~p )

Since F|pyy — D is a one-to-one continuous map from a compact space
to a Hausdorff space, theorem (3.7) implies that F'|p,; — D is a homeo-
morphism. O

With the above terminology, we show that h is homotopic to the identity
relative to C:

Proof. As we are consider h relative to C, r = 1 for all z € C. Thus,
h=hn" = (1,0 +2m)
Define F': 0D x I — 0D by
F(z,t) = (1,0 +27(1 — 1))
Then,

F(x,0) = (1,0 + 27) = h'(x)
F(l‘, 1) = (1,6) = ’L(.’L‘),
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where ¢ is the identity on C. Likewise, F' is continuous as it is polynomial
in 6, t. Consquently,
h/ = h|0D ~p 7

O

Let f : X — S™ be a map that is not onto. We show that f is null-
homotopic:

Proof. Let p be a point in S™ such that its antipodal point —p is not in
the image of f. Now let g : X — S™ be the constant function g(z) = p.
Then g(z) and f(x) never give a pair of antipodal points for any z € X. By
example two on page eighty-nine, f and g are homotopic. O

Let C'Y denote the cone on Y. We show that any two maps f,g: X — CY
are homotopic:

Proof. By extra lemma E| f, g are null-homotopic. O

We show that a map from X to Y is null homotopic if, and only, if it extends
to a map from the cone on X to Y:

Proof. ( = ): Suppose that f : X — Y is null-homotopic, via F'.
Thus,
F:CX->Y, as CX =X/xx{1}

Thus, we need to show that F' is an extension of f.
Indeed, X x {0} ¢ X x I, and
{(f(z):zeX}u{0}cY

So,

Flxxqoy(w,t) = F(2,0) = f(z), VYVreX x{0}=X.
As f is continuous, it follows that F|x oy is.
(<= ): Suppose that f: X x Y is a map and that F': CX — Y is an
extension of f. Then, consider the map H(xz,t) = F(z,t). As

Flz,1) = X x {1},
we have
F(z,1) = H(z,1) = ¢, for some ceY.
In addition,
H(z,0) = Flxxqoy = f
and we have
f=ni

Ireference this
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(8) Let A denote the annulus {(r,0) : r € [1,2],0 € [0,27]}, and let h be a
homeomorphism of A defined by h(r,8) = (r,6 + 2x(r — 1)). We show that
h is homotopic to the identity map:

Proof. Consider the function F': A x I — A given by
F((r,0),t) = (r,0 + 27t(r — 1))
Then,

F((r,0),0) = (r,0) = i(r,0)
F((r,0),1) = (r,0 4+ 2w (r — 1))

As F'is polynomial in 6,¢,r, it follows that F' is continuous. Thus,

hﬁpi

5.2 Construction of the Fundamental Group

(1) Let «, 3,7 be loops in a space X, all based at p. We write out the formulae
for (a.f).y, and «a.(B.7) and show that they are homotopic loops relative

{0,1}:
Proof. By definition, we have

a(4t) t e [0,1/4]
((aB)y)(t) = § B4t —1) te[l/4,1/2]
~v(2t—1) te[1/2,1]
and,
a(2t) te[0,1/2]
(a.(B))(t) = B4t —2) te[1/2,3/4]
~(4t —3) te[3/4,1]

Considering the canonical diagram,we have claim that H : X x [ — X,
defined by

a(itfssr)  tefo, =
H(t,s) = { B4t —1—s) te[=
y(a2mshs) te [552,1]

is a homotopy. Indeed;
a(4t) t e [0,1/4]
H(t,0) =< B4t —1) te[1/4,1/2]
v(2t—1) te[l/2,1]
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(4)

and, similarly,
(H(t,1) = a.(89))(t)
By two applications of the Gluing Lemma, H is continuous. So,
(a.)y ~m a.(B.y) rel{0, 1}

O

Let 7, 0 be two paths in the space X which start at p and end at g. We show
that o, is the composition of 74 and the inner automorphism of m (X, q)
induced by the element (o ~17):

Proof. The isomorphism defined by o, and -, are
ox((a)) =0 a.o
and,
(@) =7y
where « is a loop based at p. The claim is that
7 ((@) = 1:({r.07 Y a)(or ™))
Indeed;
Y ({07 N (o ™) = (.o H) 1 ()1 ((oy ™)

= (v o). ey).(v ey T )

=0 tao

= 0x((@))
O

Let X be a path connected space. We describe when it is true that for
any two points p,q € X, all paths from p, ¢ induce the same isomorphism
between 1 (X, p) and 71 (X, q):

Proof. As the above proof shows, if 7, o are paths from p to ¢, then
o:({a)) = o ao
Thus, o4 = 7, if, and only, if
Y ({r.o X axor™h) = 1)),
ie. {a).{B) ={B).{a). Thus, 7 (X) must be abelian. O

We show that any indiscreet space has trivial fundamental group:
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Proof. By a previous problem, if (X, 7) is indiscreet, then X is path con-
nected as 7 = {X, @}. The idea here is that there are no open sets (holes)
for a path to get caught on. We claim that X is contractible:

Consider (X, xg), for some fixed z¢ € X. Define i € 71 (X, zg) by
i(x) =29, VreX

Now, for an arbitrary f € 71 (X, ), define H : X x I — X by

i(x) tel0,12]
flz) tely21]

Then, H is the desired homotopy as

H(z,t) = {

H(z,0) =i(z)
H(z,1) = f(z)

and it is continuous as the only non-trivial open sets in 7is X and H~1(X) =
X x I, which is open in X x I. Therefore,

f~ui

O

Let (G, m, ) be a path-connected topological group. Given two loops «,
based at e in G, define a map F : [0,1]?> — G by

F(s,1) = a(s).4()

We show the effect of this map on the square, and prove that the funda-
mental group of G is abelian:

Proof. We want to show that for any two loops «, § that

(a)(B) = {BXew

- F(s,0) = F(s,1) = a(s), F(0,t) = F(1,t) = S(t),
we have that
a~pals), p~pQB(t).
We first show that a.8 ~ m(a(t), 5(t)):
Define P : [0,1]> — G by

ai 1+s
P(s,t)—{ (=) ie[(} 2]
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and, Q : [0,1]> — G by

e te[0,52]
BEEER) te(352,1]

Q(Svt) = {

Then, let H(s,t) = m(P(s,t),Q(s,t)). Note that H is a homotopy between
a.f and m(«a(t), 5(¢)). Similarly, we can show that

m(a(t), B(t)) ~m B,
where H' = QP. Therefore,
a.Brel{0,1} ~5 m(a(t), B(t)) ~p B.a rel{0,1}
Le. m(G) is abelian.

O

We show that the space E" —B, where B = {(z,y,2) :y=0A0< 2 < 1}
has trivial fundamental group:

Proof. As B is homeomorphic to a point, it follows by extra lemma that
E™ — B has trivial fundamental group. O

5.3 Calculations

(1)

We use theorem (5.13) to show that the Mdbius strip and the cylinder both
have fundamental group Z:

Proof. Letting X = E' xI, it is clear that as E and [0,1] are convex, that
X is simply connected. Consider the action of Z on the identification square
which yields the Mobius loop. It follows that

Wl(E X[07 1]/Z) = 7T1(M) ~7
This is similar for the torus. O

Consider S™ < E™™. Given a loop « in S”, we find a loop 3 in E"*!

which is based at the same point as «, and is made up of a finite number
of straight line segments, and satisfy

lla(s) = B(s)ll <1, s€[0,1]

And, we use this to deduce that S™ is simply connected when n > 2:
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Proof. Note that for each n, S™ is compact. Likewise, as [0, 1] is compact,
a([0,1]) is compact. Now, either o contains antipodal points, or it doesn’t.
Let

{Oh
be an open cover of a([0,1]). Then, it has an finite subcover; say,

(O},

If o has no antipodal points, then we are done as the path 8 which connects
one point form each Oy, at the same value is the desired path.

Now, if « has antipodal points for some s € [0, 1] wew can disjointize neigh-
bourhoods so that a(s) € V;, and —a(s) € Vj, such that a(s) ¢ V; and

—a(s) € V;, such that
Uvi=U¢

and the construction of 3 follows, as above.

To conclude the proof, we show that S™ is simply connected: Indeed; by
construction, no line adjoining «(s) and B(s) goes through the origin. Thus,
the projective straight linke homotopy shows that S™ is simply connected,
as E"! is for n > 2.

Note, this breaks down in the case where the stereographic projective ho-
motopy fails. This completes the proof. O

Considering the ’proof’ of theorem (5.13), we show that for g1,¢92 € G,
~1-(g1 ©¥2) joins g to g1g2(xo), where 71, 2 are paths from zy to g1 (o),

92(xp), respectively. In addidtion, we use this to deduce that ¢ is a homo-
morphism:
Proof. As the statement on page one-hundered-two points out,

71~(91 072)

is a path from xg to y172(z¢). Thus, as in the proof of (5.13),

¢(9192) = (7o (y1.91 ©72))
={Toy.T oY)

= (roy)Xmong)

?(91)0(92)
As mo .m0y, is a loop at w(xg) (it follows that they are in the same
homotopy class). O

Let m: X — Y be a covering map and « a path in Y. We show that « lifts
to a (unique) path in X which begins at any preassigned point of 71 (a(0)):
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Proof. As X = |J,cy{y}, we can form an open cover of Y’ by evenly covered,
i.e. canonical, neighbourhoods. Let O be the aforementioned open cover,
and set

a™'(0)
to be the family of open sets which cover [0,1]. As [0,1] < R, is compact,

and
Ja @)

is an open cover of [0, 1], | Ja~1(O) has a Lebesgue number, 4.
Now, choose n € N, so that !/n < §. Then, consider the partition of [0, 1],
given by
{0,1/n,2/n ... ,n=1/n}
Then, for each i =1,2,...,n,

o([53])

lies inside a canonical neighbourhood of Y. Thus, by setting

1 —1
tiz )
n

the result follows. O

Let 7: X — Y be a covering map, pe Y, gen (p),and F: I x [ - Y a
map such that

F(0,t) = F(1,t) =p, te]0,1]
We use the argument of lemma (5.11) to find a map F” : I x I — X which

satisfies
moF' =F, F'(0,t)=q, tel0,1]

and is unique:

Proof. As the argument of lemma (5.11) is really quite bad, we proceed
with a more technical proof via problem twenty. O

With the terminology above, we note that for each ¢ € [0, 1], we have a path
Fi(s) = F(s,t) in Y which begins at p. Let F/ be its unique lift to a path X
which begins at ¢, and set F’(s,t) = F/(s). We show that F’ is continuous
and lifts F":

Proof. By the homotopy lifting lemma, there exists a unique homotopy lift,
B of F. By the proof so mentioned, B is continuous and satisfies
moB=F

But, by the path lifting lemma, as F’(s,tg), to € [0,1] is a lift of a path
F(s,t) with initial point g,
B=F
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(7) We describe the homomorphism fy : m1(St,1) — m1(St, f(1)) induced by

each of the following maps:

o f(e?) = e+ g e [0,2n):

Proof. Note, fi({)) = {f(a)) = {(—a). And, as f(1) = —1, f«

id.

o f(e?)=¢e" 0e[0,2r], neZ:

o

Proof. Note, f(1) = 1. Thus, for each loop, we have f.((a)) = (na).

So, f« sends the loop component to the n-th degree of «.

o f(e?) = {ew e 10l

=0 e [r 2r]

O

Proof. Note, f(1) = 1. f, means that any loop part on the upper half
of S is identified to the lower part of S'. Thus, it returns the straight

line for each loop on S*.

O

(8) For each of the three different action of Zy on the torus, in section 4.4, we
describe the homomorphism from the fundamental group of the torus to

that of the orbit space induced by the natural identification map:

Proof.

O

(9) As in problem eight, page ninety-one, we show that it is impossible to find
a homotopy from A to the identify which is relative to the two boundary

circles of A:

Proof. If h ~p i rel {c1, ca}, then

a™'B ~p crel{0,1}

However, a~ ! is homotopic to the loop of constant radius which we know

is non-trivial via a deformation retract.

5.4 Homotopy Type
Throughout this section, ~ will typically denote homotopy equivalence.

(1) ¥ X ~Y and X' ~Y’, we show that X x X' ~Y x Y":

O
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Proof. We are given maps f : X - Y, g:Y - X, f/: X' - Y’ and
g Y — X' such that go f ~ 1x, fog ~y 1y, ¢’ o f' ~5 1x/ and
frog ~51y.

From the component-wise definition of the product topology, F': X x X’ —
Y x Y’ defined by F(z,z') = (f(z), f'(z/)), and G : Y x Y’ —» X x X/,
defined by G(y,y") = (9(y),¢'(y')) are continuous. Further, F oG ~ 1y xy,
and Go F ~ 1x4x/, via the canonical maps, component-wise defined: F :
(XxX)x]I > XxX F=(#,0),and G: (Y xY')xI ->Y xY’,
G = (v,9), respectively.

Thus, X x X' ~Y xY’. O
We show that the cone, CX, is contractible for any space (X, 7x)f]

Proof. By definition, we have CX = XxI/xx{1}. Define H : CX x I - CX
by
H((z,1),5) = (2,t(1 - 5))

Then, we have

\'O
I
&
=
I
—
Q

>

NOW, if Ocx € TCX then Hil(OCx) = (ch,I) e CX x 1. Thus, H is
continuous. This proves the result. O

We show that the punctured torus deformation retracts onto the one-point
union of two circles.

Proof. We consider the torus as the identification space of a square, X,
bounded by the box whose edge points are (—1,—1),(-1,1),(1,1), (1, —1).
Assume, without loss of generality, that the point (0,0) is removed.

We show that F': T x I — T defined by

Fa,t) = (1—t)z + tIIfTH

is a deformation retract onto the one point union of two circles:

As

8

F(z,1) = —

||

2We proved another proof for this. The first of which is in the extra lemmas section.
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F is a deformation retract onto 0X. The function f : X — S1\/ S3, given
by
f() glx) ze(=1,£1)t+ (1,£1)(1 —1¢)
€T =
s(z) we (L, )t+ (£, -1)(1—1)
for all ¢ € I, where g, s are the guaranteed homeomorphisms from [a, b] to
51, is a homeomorphism by the Gluing Lemma. O

For each of the following cases, we choose as base point in C' and describe
the generators for the fundamental groups of C' and S. Further, we write
down the homomorphism, in terms of these generators, the fundamental
groups induced by the inclusion of C' in S.

Consider the following examples of a circle C' embedded in a surface S:

(a) S = Mobius Strip and C = 95:

b) S=8'xS'=T ' and C = {(z.y) e T' : 2 = y}:

(c) S=St'xTand C =8 x 1:
Suppose that f,g: S' — X are homotopic maps. We prove that the spaces

formed from X by attaching a disc, using f and using g are homotopy
equivalent; in other words, we prove that X uy D ~ X u, D:

Proof. We show that this is true for S?~!. To show this, we claim that
X uy D™ and X uy D™ are deformation retracts of the same space, X up
(D™ x I), where

f=rg
As F: S' x I — S' is a homotopy between f and g, we have that

F(x,0) = f(x)
F(z,1) = g(z)

We claim that the function r : D™ x I — D™ x {0} u 8"~ ! x I given by

a1) = {EO> e 0,201 o))

w2 - ) te 20— 2l 1]

[ =

is a retraction.

Lemma. r, as defined above is a retraction:

In the first case, suppose that
(r,t)e D" x {0} uS" I xT=A
is such that x € D™, and t = 0. Then, we have that

r(z,t) = r(x,0) = (z,0)
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In the second case, if t > 0, and x € S"~!, then ||z|| = 1 and
so t € [0,1] and

T 2—-t
7t =(732_7)= >t
rat) = (22220 = @)
Thus, 7|4 = 14. A similar argument shows that r(D"xI) = A.

To complete the proof of the lemma, we note that as r is poly-
nomial in z and ¢, it follows that r is continuous. Consequently,
r is a retraction. O

We further claim that r is a deformation retraction. To show this, consider
the function
d: (D" xI)xI—>D"xI
d((z,t),s) = s(r(z,t)) + (1 - 5)(,1)
As

d((l‘, t)a 0= (I‘, t)

d((z,t),1) = r(z,t)
it follows that d is a homotopy between r and the identity. Consequently, r
is a deformation retraction.

Using the fact that r is a deformation retraction we have that X up (D™ x I)
deformation retracts onto

Xup (D" x{0}uS™ !t xI)=Xu; (D" x {0}) =~ D"
(where X Up (D" x {0} uS™ ! xI) =~ (D" x {0} Uy X) via the map sending
D™ x {0} and X to itself, and S"~! x I to F(S"~! x I).)

A similar argument show a deformation retract of D™ x I onto
D" x{1}uS"t xI

which gives the identification space with g as the attaching map. And, the
result follows. O

We use the previous problem, and the third example of homotopy given in
section 5.1, to show that the ’dunce hat’ has the homotopy type of a disc,
and is therefore contractible:

Proof. This is so horrendously explained by Armstrong. By ”the third
example of homotopy given in section 5.1,” we assume that Armstrong really
means " (to take as the canonical definition of ’dunce cap’) that the dunce
cap is constructed by gluing D? to S' via the map g : S' — S given by

o4i0 0<0<7/2
g(e) = { e¥0-m /2 <0< 3m/27
eS80 37/2 <0< 2n
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That is, S* Ug D? is the dunce hat. With this assumption, we continue with
the proof:

Consider the adjunct space given by i : S' — D?; X u; D?. To conclude,
we show that g is homotopic to the identity map:

Consider F : St x I — S given by
F(e 1) = tg(e") + (1 —t)e'
This is the straight line homotopy;
g ~Ft

Thus, by exercise twenty-seven, page one-hundered-nine, i, g : S — D? are

homotopic, so that
St ugD2 ~ St u; D? ~ D?

and the result follows. O

(7) We show that the ’house with two rooms’ is contractible:

Proof. A rigorus proof of this theorem is probably beyond the scope of
this section. However, a sketch of it is given in Allen Hatcher’s Algebraic
Topology, Chapter 0. textﬂ O

(8) We give a detailed proof to show that the cylinder and the Mobius strip

have the homotopy type of the circle:

Proof. We have previously shown that both the cylinder and the Md6bius
strip are homotopic to S'. For a more general argument:

A deformation retract F': X x I — X of X onto A ¢ X induces a homotopy
equivalence by taking F(—,1) : X — A and the inclusion ¢ : A — X. Thus,
the composition of the homotopy equivalences M — S! — S x I prove the
result. O

(9) Let X be the comb space. We prove that the identity map of X is not

homotopic rel{p}, to the constant map, p = (0,1/2):

Proof. This is a problem in Munker’s Topology. In his text, the point p is
(0,1). We proceed with this assumption:

Let p = 29 = (0,1). Consider a neighborhood U of xy which is disjoint from
I x {0}. Suppose H : X x I — X is the homotopy starting with the identity
on X and ending with the constant map X — {z¢} such that H(zg,t) = xq
for all times ¢. That means {zg} x I has a neighborhood H~1(U). By the
tube lemma (this is the statement that in the product topology, there is an

3cite this
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open set containing a compact product), there is an open set V' such that
{zo} x I €« V x I ¢ H-Y(U). That means every point in V stays in U
during the entire deformation. However a point y = (a,1) must traverse a
path to g and no such path exists within U. O

(10) FTA: We prove the fundamental theorem of algebra:

Proof. This is shown in Munker’s Topology, page three-hundered-fifty. [

5.5 Brouwer Fixed-Point Theorem

Throughout, we say a topological space (X, 7x) has the fixed-point property if
every continuous function from X to itself has a fixed point.

(1) We determine which of the following have the fixed point property:

e The 2-Sphere: S? does not exhibit the fixed point property.

Proof. We have previously shown that the map f : S™ — S", given by
f(x) = —x is a homeomorphism. O

e The Torus: T' = S' x S' does not exhibit the fixed point property.

Proof. As T' = S' x S', and the antipodal map, f, on S! is a home-
omorphism, we have that F : T! — T defined by F((z,y)) =
(f(x), f(y)), is continuous and doesn’t exhibit the fixed point prop-
erty. O

e The interior of the unit disc: IntD! does not exhibit the fixed point
property:

Proof. Note that the interior of the unit disc is homeomorphic to
the euclidean plane by a homeomorphism h : IntD' — E2. We de-
fine a function g from the euclidean plane to the euclidean plane by
g((z,y)) = (x + 1,y). Then, h=1 o goh is a continuous function from
the disc to itself that has no fixed point. O

e The one point union of two circles: X v Y = X1Y/(;3 does not exhibit
the fixed point property:

Proof. Define a function f as follows: If z € X then we map e’ to
e!@+m) Also if y € Y, we map y to f(p) = ¢™/>. This function f, as
defined on the one point union, leaves no points fixed. O

(2) Suppose X and Y are of the same homotopy type and X has the fixed-
point property. We prove that Y does not necessarily have the fixed point

property:
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Proof. Let Y be the subspace (0,1) € E", and let X = {1/2}. Note that YV’
is homotopic to X by the straight line homotopy, and every map from X to
itself has a fixed point. Yet, the function f :Y — Y, defined by f(y) = v
has no fixed point. O

Suppose that X retracts onto the subspace A € X, and that A has the fixed
point property. We show that X may not exhibit the fixed point property:

Proof. Take X and Y, as above. The straight-line homotopy proves the
assertion. O

We show that if X retracts onto the subspace A, and X has the fixed-point
property, then A also has it:

Proof. Let f : A — X be a continuous function. Since X retracts onto
A, there exists a map g : X — A such that g/A = 14. Then, fogis a
continuous function from X to X, and so has a fixed point. Hence, there
exists an a € A such that f(g(a)) = f(a) = a. This completes the proof. [

We deduce that the fixed-point property holds for the ’house with two
rooms’, X:

Proof. As was previously show, X is contractible to some xg. Thus, there
exists some map F' : X x I — X such that F(z,0) = z, and F(x,1) = xo.
Thus, by extra lemma EI, every map f : X — Y is null-homotopic. In
particular, this includes that maps g : X — X. Thus, X has the fixed point
propertyﬂ

To use the previous problems hints, we could think about starting with the
unit cylinder, and pushing in the areas from the top and bottom. However,
this method is not rigorous. O

Let f be a fixed-point-free map from a compact metric space (X, d) to itself.
We prove there is a positive number € such that d(z, f(z)) > €, Yz € X:

Proof. We show the contrapositive; Suppose that for all € > 0 there exists an

element z € X such that d(z, f(x)) < e. Pick 1 € X such that d(z1, f(z)) <

i<l

It follows that there exists a set, {x1,...,2,} < X such that d(z;, f(x;)) <
1

d(xg, f(zr)), where i < k and d(xg, f(xg)) < e forall 1 <k < n.

Now, let

€ = %min {d(ml,f(ml))’ s (@, f (), n41- 1}

4include this
5If this is not totally clear, see extra lemma.



5.5. BROUWER FIXED-POINT THEOREM 93

Then there exists an element x € X such that d(z, f(z)) < €. Pick x € X
that satisfies this property, and call this 2,,,1. Note here that d(z, f(z,)) <
d(xni1, f(Tnt1)) by construction. So that for all i < n + 1, d(x;, f(x;)) <
d(xn, f(xn)) < d(@nt1, f(®ne1)). Thus by induction, we have created an
infinite sequence {x,}>_; of distinct points such that d(zx, f(zg)) < Yk
for each positive integer k. And, {d(z,, f(zn))}n is a monotone decreasing
sequence.

Since X is compact, every infinite subset has a limit point. Therefore
{,}*_; has a limit point x € X.

Let € > 0 be given. Since f is continuous at x, then there exists a 6 > 0 such
that d(z,a) < § = d(f(z), f(a) < <3 for all a € X. By the Archimedian
Property, we can find a positive integer k, such that

<

ol
wl ™

Set r = min{g,é}. Then, since z is a limit point of {x,}_;, there are

infinitely many points of the sequence, such that d(zy,2) < r. Thus, there
exists a point xy such that N > k and d(zn,x) < r. Since d(zy,z) < 4,
then d(f(zn), f(z)) < 3. Since N > k,

d(xNvf(IN)) < d(fﬂk,f(ajk)) < 1/k < g

Therefore

d(a, f(2) < d(w,ax) + d(on, fen) +d(f(on). f@) < 5+ 5+ 5 =¢

Thus, for all € > 0, we have that d(z, f(x)) < e. Thus, d(z, f(z)) <0, and
hence d(z, f(z)) = 0. Consequently, f(z) = x, and so f is not a fixed-point-
free map. O

We show that the unit ball, B™, in E", with (1,0,...,0) removed does not
exhibit the fixed point property:

Proof. Let p = (1,...,0). Consider the function f : B"\{p} — B™\{p},

defined by f(z) = "”;p . We show that f is continuous:

Let O be an open set in B"{p}. Let z € f~*(O). Then f(z) € O, and since
O is open there exists an r > 0 such that B,.(f(z)) < O. Let y € Ba,.(z).
Then |z — y| < 2r. Then,

@) - ) = 122 e L

Thus, y € B,(f(x)). Hence, y € f~1(O). Thus, By, (x) = f~1(0O). There-
fore, f~1(O) is open and f is continuous.
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Further, f does not have the fixed-point property; If f(z) = z = (z1,...,z,),
then we have 2x = x + p. Implying that x; = 2x;, 2 < ¢ < n. Thus, z; = 0.
However, then the only solution to 1 + 1 = 2z; is 7 = 1. This is a
contradiction since we must have z = p ¢ B™\{p}. O

We show that the one-point union of X and Y, X v Y, has the fixed-point
property if, and only if, both X and Y have it:

Proof.

( = ): Suppose that the one point union X v Y has the fixed-point-
property. Let f : X — X be a map, and let p be the point glued
together in the one point union. Then, define g : X vY — X v Y,
as g(z) = f(z), if x € X, and g(x) = f(p), if z € Y. By the gluing
lemma, g is a continuous map and so, by hypothesis, has a fixed point
zg. Note that g is a map into X. Thus the fixed point must be in
X. Hence, by construction, zg = g(xg) = f(z0), so that f has a fixed
point. Similarly, any continuous function from Y to itself has a fixed
point.

( < ): Suppose X and Y have the fixed point property and let
f:XvY —> X vY beamap. Then, suppose f(p) € X, and define
amap g : X — X such that g(z) = f(z), if f(z) € X, and g(z) = p,
if f(x) ¢ X. Then, since g is continuous, it has a fixed point. By
construction, the fixed point must be one x = g(z) = f(z). Thus, f
has a fixed point. Next, suppose f(p) € Y, and defineamapg:Y — Y
such that g(y) = f(y), if f(y) € Y, and g(y) = p, if f(y) ¢ Y. Then,
since ¢ is continuous, it has a fixed point. By construction, the fixed
point must be one y = g(y) = f(y). Consequently, f has a fixed point.

O

(9) How does changing ’continuous function’ to ’homeomorphism’ in the defi-

nition of the fixed-point property affect problem 33, 377

Proof. We first examine problem 33:

52: This topological space would not exhibit the fixed point property.
We know that the antipodal map is a homeomorphism which leaves no
points fixed.

S1 x S1: Likewise, the antipodal map on each component, S*, provides
another counter example.

Int D: Neither does this space have the homeomorphic fixed point
property. To see this, we note that Int D ~ E, and the map g : E — E,
given by g(xz) = x + 1 is a homeomorphism which leaves no points
fixed.
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X\VY: First, consider the map E; : X\/Y — X\/Y, given by
Bi(z) = x, if x € X — {p}. And, Fy(y) = e¥"/>. Then, E; is a
homeomorphism, which leaves X fixed, except for p. Similarly, define
E, for Y. Then, it follows that E; 0 By : XY — X\/Y is a
homeomorphism that leaves no points of X \/Y fixed. Thus, X \/Y
does not exhibit the fixed point propertyﬁ

Now, we examine problem 37:

This shape does not exhibit the homeomorphic fixed point property. Con-
sider 0B™ = S"! and let p = (1,0,...,0). Then, B™ — {p} = Int B® U
S7=1 —{p}. Furthermore, without loss of generality, S" 1 —{p} ~ {—p}[] Tt
follows that Int B™ U S"~! — {p} ~ Int B" U {—p}. To conclude, we exhibit
a homeomorphism on Int B™ U {—p} which does not have a fixed point:

Consider f : Int B™ U {—p} — Int B™ U {—p} defined by

—T x¢{*p70}
fl@)=40 z=-p
—-p =0

The fact that f is 1-1 and onto is clear by construction. Further, f is
continuous, by the Gluing Lemmaﬂ It follows that f is a homeomorphism,
as f~' = —f. However, f clearly leaves no points fixed. O

5.6 Separation of the Plane

Most of the exercises in the section are too advanced for an undergraduate
course in algebraic topology. As a result, we refer to well-known sources, which
prov e the results.

(1)

(2)

Let A be a compact subset of E". We show that E™ —A has exactly one
unbounded component:

Proof. As A is compact, it is closed and bounded. Further, we identify E"
with S™ — {p} under stereographic projection, w. Then, A is a compact set
in 8™ such that {p} ¢ A n S™. The remainder of this proof is an extension
of lemma (61.1), Munkers’ Topolog;t,ﬂ O

Let J be a polygonal Jordan curve in the plane. Let p be a point in the
unbounded component of E? —J which does not lie on any of the lines
produced by extending each of the segments of J in both directions. Given

5We make use of the previous proof; that is X V'Y has the fixed point propert iff X and
Y both have it.

7See previous exercises.

8 Armstrong, pg. 69.

9Icite this
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a point x of E* —J, say that z is inside (outside) J if the straight line
joining p to x cuts across J an odd (even) number of times. We show that
the complement of J has exactly two components, namely the set of inside
points and the set of outside points:

Proof. See The Jordan-Schonflies Theorem and the Classification of Sur-
faces, by Carsten Thomassen. O

Let J be a polygonal Jordan curve in the plane, and let X denote the closure
of the bounded component of J. We show that X is homeomorphic to a
disc:

Proof. See The Jordan-Schonflies Theorem and the Classification of Sur-
faces, by Carsten Thomassen. O

We prove Schonflies theorem for polygonal Jordan curves:

Proof. See The Jordan-Schonflies Theorem and the Classification of Sur-
faces, by Carsten Thomassen. O

If J is a Jordan curve in the plane, we use theorem (5.12) to show that the
frontier of any component of E? —.J is J:

Proof. See The Jordan-Schonflies Theorem and the Classification of Sur-
faces, by Carsten Thomassen. O

We give an example of a subspace of the plane which has the homotopy
type of a circle, which separates the plane into two components, but which
is not the frontier of both these components:

Proof. Consider the standard annulus in the plane,
A={(z,y):2°+9y° =r Al <r<2}

Then, as we have previously shown, A deformation retracts onto S* c A,
and so A has the homotopy type of a circle. Further,

Int A = {(z,y) : 2® +y* < 1},
with 0Int A = S # A. In addition,
Out A = {(x,y) : 2% +y* > 2},
and 0Out A = 251 # A. O

We give example of simple closed curves which separate, and fail to separate

e the torus:



5.7. THE BOUNDARY OF A SURFACE 97

Proof. Considering the torus as the identification space of [0,1]?, the
circle of radius 1/4 centered at (1/2,1/2), separates T, while the line
x = 1/2 does not. O

e RP2:

Proof. Note that RP? is given by the equivalence relation Az, \ # 0.
Thus, a curve in RP? is a set of equivalence classes. Thus, a circle
of radius 1/4 centered at (1/2,1/2), which is equivalent to an arc on
the 2ﬁrst quadrant of S' separates RP2. And, S! does not separate
RP~. O

(8) Let X be the subspace of the plane which is homeomorphic to a disc. We
generalize the argument of theorem (5.21) to show that X cannot separate
the plane:

Proof. See The Jordan-Schonflies Theorem and the Classification of Sur-
faces, by Carsten Thomassen. O

(9) Suppose that X is both connected and locally path-connected. We show
that amap f : X — S* lifts to a map f’ : X — R if, and only, if the induced
homomorphism fy : m1(X) — 71(S?) is the zero homomorphism:

Proof. See the accompanying solutioﬂ O

5.7 The Boundary of a Surface

(1) We use an argument similar to that of theorem (5.23) to prove that E* and
E* are not homeomorphic:

Proof. We have previously show that 71 (E™) is trivial for m > 3, while
71 (E?) is not. The result follows. O

(2) We use the material of this section to show that the spaces X, and Y
illustrated in problem twenty-four of chapter one are not homeomorphic:

Proof. Suppose, to the contrary, that X and Y were homeomorphic. Then,
by corollary (5.25), they have homeomorphic boundaries. Further, it follows
from the proof of theorem (5.24), that the outer boundaries, Out X, of X
and OutY of Y must be homeomorphic, as well as the inner boundaries.
However, we have previously shown that they are not homeomorphic, as
one is separable by removing a point, and the other is not. O

10http:/ /stanford.edu/class/math215b/Sol3.pdf
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Chapter 6

Triangulations

Unfortunately, this is the point in Armstrong when the definitions presented are
even less clear. For this reason, the reader is referred to [this short paper which
provides an excellent introduction to simplicial complexes and triangulations;
the definitions presented are inline with those in Armstrong.

6.1 Triangulating Spaces
(1) We construct triangulations for
e the cylinder:
Proof. Please see figure [6.1} with the usual identifications. O
e the Klein Bottle:
Proof. Please see figure [6.2] with the usual identifications. O
e the double Torus:
Proof. Please see figure [6.3] with the usual identifications. O

(2) We finish off the proof of lemma (6.3):

Proof. To do this, we mimic the proof theorem (3.30) and show that |K]| is
path-connected;

Let
z={J B@onlkh=( J )nIKl

0<d<e 0<d<e
We claim that |K| = Z. Since B(x,0) is open in E" for each §, and |K| has
the subspace topology, Z is open. Further,

K|-2 =L = | B(y.3,)

ve|L|

99
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Figure 6.1: Triangulation of the cylinder.

Figure 6.2: Triangulation of Klein bottle.
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N

Figure 6.3: Triangulation of the double torus.
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where 0, = d(z,y) —e. So, |K|— Z is open. And, since |K| is connected,
7 # ¥, theorem (3.20) (page fifty-seven), implies Z = |K]. O

(3) If |K| is a connected space, we show that nay two vertexes of K can be
connected by a path whose image is a collection of vertexes and edges of K:

Proof. Let v be a 0-simplex in K and let P, be the subcomplex of K con-
sisting of all edge path starting with v, along with the edge paths they
span.

Now, if o is a simplex of K that has a vertex, call it w in P,, then ever
vertex w’ of ¢ is in P, (by definition). Thus, o € P,,.

To conclude the proof, we show that |P,]| is clopen in |K|: The fact that
|P,| is closed follows from the fact that each 1-simplex is closed and there
are only finitely many. Likewise, |P,| is open, as each 1-simplex is closed.

Thus, as v € P, # &, we have by theorem (3.20) that P, = K and the
result follows. O

(4) We check that |CK| and C|K| are homeomorphic spaces:

Proof. Let K be a complex in E". Then, CK consists of the simplices of
K and the join of each of them to some vertex, v via 1-simplices and the
O-simplex v itself. So, |CK]| is the geometric cone on |K|. By lemma (4.5),
page sixty-eight,

|CK| ~ C|K]|

O
(5) We show that if X and Y are triangulable spaces, then X xY is triangulable:

Proof. Let k : |[K| — X, and A : |L| - Y be the triangulations of X, and
Y. We claim that the function

¢:|K|x|L| > X xY, ok = (kk), 1))

is the desired triangulation.

As k, A are homeomorphisms, the result follows. O
(6) We show that if K and L are complexes in E", that |K|n|L| is a polyhedron:

Proof. Unfortunately, this is another ill-posed question; what Armstrong
neglects to say is that X is a polyhedron iff X can be triangulated (this
is the canonical definition given elsewhere). Further, this question is really
beyond the scope of this chapter. As such, we give a proof which assumes
that every convex, compact, connected subset of E" can be triangulated;
we actually show that |K| n |L| is the union of such subsets of E", where
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connected implies a maximally connected component (we note that it need
not be the case that |K| n |L| is connected. Consider figure ):

Let
Kl= J o lL=o

o€|K| o€|L|

be the simplicial decompositions of |K| and |L|. Then, as the intersection
of convex sets is convex, we have

K|l ILl = ] (o)
o€lK]|
o’e|L|

is convex and each o n ¢’ is convex.

Now, as dim K,dim L < N < oo, by the well-ordering principle, we start
with the smallest dimensional intersection of simplices, say n € N. Pick
any such (non-empty) intersection and label it 7. Problem 3, shows that
kY is edge connected and further, as each simplex is completely determined
by its vertexes, kT determines some maximally connected, convex, compact
subset of E".

To conclude the proof, we extend this process to some other intersections

n

g =N

KT, Ky Ky, iy, dimk] = dim sk

This method can be extended to the next higher’ dimension n + 1 to show

that A
K[l = [ Is]
n<iSN
J
which is indeed triangulable, and so a polyhedron. O

We show that S™ and P™ are both triangulable:

Proof. We give a triangulation of S™ and use the antipodal map to establish
a triangulation for P™:

Let (S™)* denote the northern hemisphere of S™ and consider S™ < E™ and
the canonical basis

{e1,ea,...,en}, e =1(0,...,0,1;0,...,0)
We claim that the set X of 1-simplices given by
0 =€i€+1, 2<i<n, n+1l~2
along with the set of 1-simplices defined by

UNi:Nei) ]\[:(1,70)7 2<Z<n
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along with the 2-simplexes 0;, on; bound, and all their vertexes is a trian-
gulation of the norther hemisphere of S™:

Indeed; The fact that X is a simplicial complex is clear from construction
and the definition of S™ and by radial projection, 7, we have

™| X] > (5"

is a homeomorphism, and so 7 is a triangulation of (S™)*. Further by
considering the simplexes

os; = Se;, S=(O,...,1), 2<i1<n

we extend 7 to a map

MI: | XuY|—S"
It follows that S™ is triangulated by II.
To show that RP" is triangulable, we note that the antipodal map

i : 87— 85"

is a homeomorphism and that RP" is defined as the identification map
induced by i_1, call it ¢.
Consequently,

Pl | X uY| > RP

is a homeomorphism, and so a triangulation. O
(8) We show that the ’dunce hat’ is triangulable, but the ’comb space’ is not:

Proof. Please see figure [6.4] with the usual identifications.

To show that the comb space X is not triangulable, we first prove that it is
not locally connected:

Lemma. If X were locally connected we could find a connected
open neighbourhood O for each each neighbourhood of p. But,
each open neighbourhood O contains infinitely many terms of

{ ( ) }n:

As 11

{Gg)n=m}
is clearly disconnected, it follows that X is not locally con-
nected. O

From lemma (6.3), it follows that |K| is locally connected (this is shown
in [2]). Now, since local connectedness is a topological property, if X were
triangulable then it must be locally connected. However, we have just shown
that X is not locally connected. O
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Figure 6.4: The second barycentric subdivision of the ’dunce cap’ yeilds a tri-
angulation.
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6.2 Barycentric Subdivision

(1) We present a visualization of the first barycentric subdivision of a 3-Simplex:
Proof. Please see figure [6.5 O

(2) Let F be an open cover of |K|, we show the existence of a barycentric
subdivision K", with the propert that given a vertex v of K", there is an
open set U € F which contain all the simplexes of K" that have v as a
vertex:

Proof. This is an application of Lebesgue’s lemma. O

(3) Let L be a subcomplex of K, and let N be the following collection of sim-
plexes of K2: a simplex B lies in N if we can find a simplex C in L? such
that the vertexes of B and C' together determine a simplex of K2. We show
that

e N is a subcomplex of K?2:

Proof. Let v be a vertex in N. Since B < N, there exists a simplex
Cel?

such that the vertexis of B and C' together will determine a simplex of
K?2. Then, V and C will determine a sub-simplex of the above simplex,
ve N.
Now, let B’ be a sub-simplex of B. Then, B’ and C determine a sub-
simplex of the simplex determined by B and C in K?, which implies
that

B'eN

So, N is a sub-complex. O
e |N| is a neighbourhood of |L| in |K]|:

Proof. Let y € |L| and let V be the union of simplices in K2 which
contain y. Then, V' contains a neighbourhood of y. Since every simplex
in V is contained in |N|, |N| is a neighbourhood of |L| in |K]. O

(4) We use the construction of problem 11 to prove that if X is a triangulable
space, and Y is a subspace of X which is triangulated by a subcomplex of
some triangulation of X, then the space obtained from X by shrinking Y
to a point is triangulable:

Proof. O
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Figure 6.5: The first barycentric subdivision of the standard 3-simplex.
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6.3 Simplicial Approximation

(1) We use the simplicial approximation theorem to show that the n-sphere is
simply connected for n > 2:

Proof. This is a special case of the next problem; consider
St =[0,1]/{0,1}

O

(2) We show that if & < m,n that any map from S* to S™ is null homotopic,
and that the same is true of any map from S* to S™ x S™:

Proof. Let
h:|K|—S* g:|L| - 8™

be triangulations of S¥ and S™, k < m. Suppose that

f:8k > 8m
is a map. Then, we have a map of complexes,

gl o foh:|K| > |L|

which has a simplicial approximation

s | K[ —|L|

Since
dim |K| < dim |L|,

s is not onto. Further, since for any point (we think of vertexes) p € S™,

|IL|—p=S"—p=R

it follows that s is null homotopic (R™ is convex).

But, since s ~ g~ 1o foh ~ f (as g and h are homeomorphisms), we must
have f is null-homotopic.

For the second part of the proof, stereographic projection proves the result.
O

(3) We show that a simplicial map from |K| to |L| induces a simplicial from
|K™]| to |L™| for any m:
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(6)

Proof. Let s : |K| — |L| be the simplicial map. Then, for K, L' the
barycenter of each simplex of K and each simplex of L can be associated
via s; since the vertexes of K are mapped to vertexes of L and extended
linearly, each simplex of K is associated with a simplex in L. So, each
barycentre living in a simplex of K can be mapped to a barycenter of
the associated simplex of L, via s and extended linearly. Then, this new
function, s* : |K!| — |L!| is continuous.

Far any iteration, we repeat this process, extending each barycentre linearly.
To obtain a simplicial map,
S K 1]
O

Suppose that s : |[K™| — |L| simplicially approximates f : |K™| — |L|, and
t: |L"| — |M| simplicially approximates g : |L"| — M. We determine if
ts: |K™*"| — |M| is always a simplicial approximation for gf : |[K™""| —
| M:

Proof. This is essentially the statement that the composition of simplicial
maps is simplicial. We claim that the answer is yes:

A small induction argument, using lemma (6.4) page one-hundered-twenty-
six, shows that for m > 0, |[K™*"| = |K|. Now, let x € |[K™*"| = |K]|.
Then,

(g0 f)x) = g(f(x))

and, by definition, we have that s(x) € carrier f(z). This implies that
t(s(z)) € carrier g(f(x)), as t is simplicial. However, by definition we then
have g(f(x)) € t(A), for some simplex A of L™. But then, by definition we
have that ts simplicially approximates gf. O

We use the simplicial approximation theorem to show that the set of homo-
topy classes of maps from one polyhedron to another is always countable:

Proof. By the simplicial approximation theorem, we know that any map
[ —|L|

is homotopic to a simplicial map,
s |[K™ — |L]

But, by definition, there are only a finite number of such choices for s, yet
m € N, and the result follows. O

This is left to the reader as an exercise.
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6.4 The Edge Group of a Complex

(1) We use van Kampen’s theorem to calculate the fundamental group of the
double torus by dividing the surface into two halves (each of which is a
punctured torus). And then, we do the calculation again, but this time
splitting the surface into a disc and the closure of the complement of the
disc:

Proof. To provide a rigorus proof of this is really beyond the scope of this
text. For a complete answer see El, [2], and consider the following explanation

given by E

By van Kampen’s theorem, what you get is actually
7T1(T) *ﬂ.i(sl) 7'&'1(T)

which is an amalgamated product (a pushout in the category of groups).
Roughly speaking if you have two groups G; and G, and embeddings i,
and iy of a group H in both then G *g *Gs is the group freely generated
by the elements of G; and G2 but identifying elements i1 (h) and i2(h) for
heH.

Now 71(T) can be computed using the fact that T' deformation retracts
to a bouquet of two circles. (Think about the standard torus; fix a point
and look at the circles through it going round the torus in the two natural
ways.) O

(2) We show that the edge paths E; and Es introduced in the proof of theorem
(6.10) are equivalent:

Proof. This is, essentially, the argument on page one-hundered-thirty-three,
applied again while noting that

[IL™] = [(I < I)™] = |L| = [T x I

O

(3) We prove that the 'dunce hat’ is simply connected, using can Kampen’s
theorem:

Proof. Consider figure Let the one simplex (complex) in blue be K,
and the 2-simplex bounded if all edges were blue be F. Then, as such, we
can represent G(F,L) = E(J,v) via the generator a. As van Kampen’s
theorem suggests, that the dunce cap is generated by a with the relation
a+ a—a = a, and we have that

w1 (| J],v) x m (| K], v) = ZR{0} = Z
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Figure 6.6: The dunce cap as the identification space of the triangle. Here, the
blue line represent positive orientation, and the red, negative; call these a, a,
—a.
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For a more in-depth proof, please see [10]. O

Let X be a path-connected triangulable space. We examine how attaching
a disc to X affects the fundamental group of X:

Proof. The following proof is from [8]:

Using van Kampen’s theorem, let U = N(X) and let V' = N(D) where by
N(—) we mean ’take a small open neighbourhood’. By definition, it is easy
to see that U n'V is homotopy equivalent to a circle and so the fundamental
group of U u V is equal to

1 (U) *r(UAV) T1 (V)a

where we treat 71 (U n V') as being the subgroup of 7 (U) and 1 (V') gen-
erated by the class of loops homotopic to the boundary circle 0D.

This is isomorphic to m1(X)/{[0D]) where here [0D] denotes the ’class of
maps homotopic to usual inclusion of the circle into the boundary of D’. [

Let G be a finitely presented group. We construct a compact triangulable
space which has fundamental group G:

Proof. We present an image, which is by no way exhaustive, yet illustrates
the method; Let G be finitely represented:

G = {917927"'7977. : T17T2a"'arm}
Consider the i-th relater
ri=a™b" ... 2", ab,...,2z€G, n;el

Then, we can construct a planar

k
|{a7b772}|2‘n1| -gon
1=1

which represents the relater group and is triangulable. Please see figure
This is clearly a (compact) triangulation. Note that the chords drawn
in represent an element of the form

in the relater expression.

Lcite this
2cite this
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(a) A triangulation of the i-th re- ¢ ®
lator in the finite representation of (b) A triangulation of a group ele-
G. Here, r; is a 15-gon. ment in G, with the single relater.

Figure 6.7: Compact (triangulable) representation of relaters and a ’single’
group element. The colored borders represent group elements.

Now, in the case where an element g € G is not a part of a relater’s expres-
sion, we have figure [6.7D} also triangulable, and compact.

To conclude, it follows from exercise 5, page one-hundred-twenty-four, that
the finite wedge,
\/ Gi7
K3

where G is the planar representation given above for each g € G, is trian-
gulable. Thus, by construction, we have that

™ (\/G) =G

6.5 Triangulating Orbit Spaces

(1) Suppose {V, S} satisfies the hypotheses of the realization theorem, and label
the elements of V' as vq,...,vg. Suppose that x; denotes the point

2m—+1
(i,i%,...,i"" e R

We show that any 2m + 2 of the points x1, ...,z are in general position,

and so that the correspondence v; < x; can be used to realize {V,S} in
E2m+1:

Proof. O
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Figure 6.8: The complete graph on four vertexes.

v the previous problem the vertex scheme of any one-dimensional complex

2) By th i blem th t h f di ional 1
can be realized in E*>. We find a one-dimensional complex whose vertex
scheme cannot be realized in E*:

Proof. Consider the complete graph on four points, figure [6.8]

Any attempt to realize this in E? will result in a self-intersection. Note,
the cross of the 1-simplices is not a simplex, by definition of the vertex
scheme. O

(3) Consider the antipodal action on S? and the triangulation shown in fig.
6.17. We show that the map ¢ : |K|/G — |K'/G| is a homeomorphism,

and draw the resulting triangulation of the projective plane:

Proof. O
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(4) We show that the map ¢ : |K|/G — |K/G| is a homeomorphism iff the
action of G on |K| satisfies:

e The vertexes of a 1-simplex of K never lie in the same orbit:
Proof. O
e If the sets of vertexes of vg,...,vg,a and v, ..., vk, b span simplexes
of K, and if a, b lie in the same orbit, then there exists g € G such that
g(v;) = v; for 0 <i < k and g(a) = b.
Proof. O

(5) We check that the previous conditions are always satisfied if we replace K
by its second barycentric subdivision:

Proof. O

6.6 Infinite Complexes

(1) We find the triangulations of the following spaces from the crystallographic
groups shown in fig. 4.5, page eighty-four;

e the sphere:

Proof. O
e the torus:

Proof. O
o the Klein bottle:

Proof. O

(2) We check that the construction illustrated in fig. 6.21 really can be carried
out to produce a realization of T in E*:

Proof. This is left to the reader. O

(3) We show that the following collection X of simplexes in E? is not a simplicial
complex; For each n € N, we have a vertical 1-simplex joining (1/n,0) to
(1/n,1) and a sloping 1-simplex with vertexes (1/n,0), (1/n + 1,1). In
addition, we have a 1-simplex on the y axis joining (0,0) to (1,1):
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Proof. Consider 0 = (0,0) € X. Then, for each € > 0 (small enough), we
have that
B.(0) n X

is not path connected; to see this, suppose by contradiction that B.(0) n X
was path connected; a simple sequential argument shows that we can find
€9, for which

B(0)n X nB,0)nX =

We now consider the case of removing the 1-simplex on the y axis: We claim
that we do not obtain a simplex; Indeed, considering the sequence

(o), e x-r

<%,O)—>O¢X—Y

we have that

Consequently, X — Y is not closed. O

(4) We determine whether the comb space C, or the space illustrated in figure
3.4, page sixty-three, can be triangulated by an infinite simplicial complex:

Proof. Neither of these spaces can be triangulated: each exhibits non local-
connectedness. O

(5) We show that the free group on a countable number of generators is a
subgroup of Z®Z, and deduce that any subgroup of this group must be
free:

Proof. We show that G is isomorphic to some subgroup of Z® Z by Cayley’s
Theorem:

Suppose that G is countably representable, and without loss of generality,
has more than two generators;

G ={Gg1,92, s Gny---|T1,72, o, Py e o o)
Then, we claim that the mapping,
p:G—>ZQ®Z, ¢(gﬁi gln“i) =a™bp™ .. . a ™
is a homomorphism. Now, if
w =g

is a word in G, then

Dlght . ght) = a™b™ . a™b" = B(gnt) ... (gnt)
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(®)

Further, ¢ is clearly onto. Thus, by Cayley’s theorem, G isomorphic to a
subgroup of Z® Z.

Now, we show that any subgroup of Z®7Z is free: As
H < ZOZ = (a, D)

H is a nonempty, closed subset of words generated by a,b with identity and
inverses. As such, rank H is countable (we can actually count the words as
7 x 7 is countable). So, at least (this expresion may not be 'minimal’),

H={gnllre =€, k=1,2,...)
But then, by the previous result,

H>=S<ZQZ

We show

e if X is the polyhedron of a finite complex, and if A is simplicial, the
pointwise periodic implies periodic:

Proof. O

e a connected infinite complex K and a simplicial homeomorphism of
| K| which is pointwise periodic but not periodic:

Proof. O

We determine whether or not a pointwise periodic homeomorphism of a
compact space need be periodic:

Proof. O

Let G be a group of homeomorphisms of the space X. We show

e that if N < G, G/N acts in a natural way on X/N and that X/G is
homeomorphic to (X/N)/(G/N):

Proof. O
e if F'is the smallest normal subgroup of G which contains all the el-
ements that have fixed points, then G/F acts freely on X/F in the

sense that only the identity element has fixed points:

Proof. O
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(10)

(11)
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Suppose that in addition to the conditions in the previous problem that X is
a simply connected polyhedron, G acts simplicially, and X /G is triangulated
so that the projection p : X — X /G is simplicial. Choose a vertex v of X
as a base point and define ¢ : G — 71 (X/G, p(v)) as follows: given g € G,
foin v to g(v) by an edge path E in X; then ¢(g) is the homotopy class of
the edge loop p(E).

We show that ¢ is a homomorphism, and that each element of F' goes to
the identity under ¢, and ¢ is onto:

Proof. O
We the assumptions of the previous problem, we show that X /F is simply
connected, and that the action of G/F on X /F satisfies the hypothesis of
theorem (5.13):

Proof. O
We deduce theorem (6.18):

Proof. O
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Surfaces

7.1 Classification

(1)

We show that punching a disc out of the sphere and ading a cross cap in its
place gives a representation of R P? as a surface in E* with self-intersections:

Proof. Again, this is problem which cannot be proved rigorously at this
stage in the text. For a proof of this question, please see [1], [11]. O

Let X consist of S? plus one extra point p. The neighbourhoods of the
points of S? are the usual ones, and those of p are sets of the form [U —
{(0,0,1)}] U {p} where U is a neighbourhood of (0,0,1) in S?. We show
that X is not Hausdorff, but is locally homeomorphic to the plane:

Proof. Let V' be an open neighbourhood of (0,0,1) and let W be an open
neighbourhood of {p}. Then,

W=V —({(0,0,1)} u {p})

Now, as V' is a neighbourhood of (0,0,1), V.n W must intersect, since each
contain a disc or radius e about (0,0, 1), for € small enough. Clear, X is not
Hausdorff.

To show that X is locally homeomorphic to the plane, let W, V' be as above
and define

2
h:W—->E
as h(1) = 0, and stereographicly otherwise. Then, h is a homeomorphism
between W and an open disc in E2.

We now consider whether or not it seems reasonable to call X a surface: It
is not, as it will undermine the classification theorem. O

119
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Figure 7.1: The Klein bottle (KB) as the typical identification space.

(3) We show that the connected sum of a torus with itself is a sphere with two
handles, and the connect sum of a porjective plane with itself is a Klein
bottle:

Proof. Giving an explicit construction for the homeomorphism between
T#T and the sphere with two handles added is tedious. Instead, we note
that T#7T has genus 2.

To show that ) )
RP#RP ~ KB,
we note that )
RP-D =~ MB
by definition. The result follows; see figure [7.1] O

(4) We determine what the connected sum of a torus and a projective plane is:
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Proof. To rigorusly show this is beyond this section in the text. But,

2 2 2 2 2
RP#T ~RP#RP#RP ~RP#KB

7.2 Triangulation and Orientation

I think that on page 154, in the definition of a combinatorial surface, it should
say that each vertex lies in at least two triangles, not ”three”. In addition,
Armstrong must have meant that any vertex which happens to lie in three
triangles fits together as in fig. 7.8.

(1) Suppose we want to triangulate a surface which has a boundary. We examine
how the definition of a combinatorial surface needs to be adjusted:

Proof. We require that the 1-complex contains the boundary. O

(2) Let K be a combinatorial surface. We

e show that the triangles of K can be labelled T71,...,Ts in such a wa
that T; always has an edge in common with at least one of T, ..., T;_1:

Proof. We proceed by induction on i:

— Base case: Let i = 2. Consider the triangle 77, then pick an edge
from Ti, call it e. And, as K is combinatorial, let 75 be a triangle
that shares e with T;. The proves the base case.

— Hypothesis: Suppose that this is true for i > n for some n <
dim K. Then, if T1,...,T; does not have an edge in common with
T; 11, then we have contradicted the fact that K is connected.

This proves the result. O
e build a model for the surface of |K| in the form of a regular polygon
in the plane, which has an even number of side, and whose sides have

to be identified in pairs in some way:

Proof. Note quite sure what this means. Perhaps as statement that a
square can be subdivided as previously suffices. O

(3) We show that if h : |[K| — S is a triangulation of a closed surface, then K
must be a combinatorial surface:

Proof. We first show that that K cannot have dimension 1:



122

CHAPTER 7. SURFACES

Lemma. As h is a triangulation of a closed surface, we have
that for every s € S, there exists an open neighbourhood O < §
and a homeomorphism ¢ such that

$:0>U, Ucrg

But then, if K has dimension one, then this is a contradiction
to invariance of domain (as it is preserved under homeomor-
phism). Thus, dim K # 1. O

By a similar argument as above, it follows that the inverse mapping
hle™ U« |K]|

implies dim K < 3. As K has dimension 2 and is a surface, it is connected.
Let T be its edge graph. Further, for each = € Int(y) < T, there exists an
open neighbourhood @, which is homeomorphic (by extension) to E?; an
argument as theorem (5.23), page one-hundred-sixteen, shows that v must
border two 2-simplexes. Thus, degv > 2 for each vertex v e ' c |K]|.

To conclude, we show that if a vertex v of K is in at least three triangles,
then it forms a vertex for a cone, as in figure 7.8; But, considering the open
start of v, this is clear; the 1 skeleton of the open star defines a tree, and
consequently,

star(v, K) — star(v, k)

is a simple closed polygonal curve by induction on the edge set. O

Let G be a finite group which acts as a group of homeomorphisms of a closed
surface S in such a way that the only element with any fixed points is the
identity. We show

e that the orbit space S/G is a closed surface:

Proof. The following proof is credited to [4]:

Since the group acts freely, for any point = € S, the elements g - = are
pairwise distinct for g € G. Because S is Hausdorff, this means that for
every g, there are neighborhoods U, and Vj respectively of  and g -«
that are disjoint. Now G is finite so ﬂgeG Uy is still a neighborhood
of . G acts by homeomorphism, so if you restrict the neighborhoods
you can then prove that the quotient map is a local homeomorphism.
Thus S/G is locally homeomorphic to a plane, just like S.

Similarly if x and y have different orbits, then g-z # h-y forall g,h € G
and so you can find neighborhoods Uy, V}, that don’t intersect. The
intersections () s Uy and (), Vi are still neighborhoods because G is
finite, and map to neighborhoods of [x] and [y] that don’t intersect in
S/G. So S/G is Hausdorff too. O

e S may be orientable, yet S/G non-orientable:
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()

Proof. We know that the canonical group action of Zs on S? yeilds the
Mobius strip, which is non-orientable. O

e that if S/G is orientable, then S does not have to be:

Proof. The example above works, by considering the group action of
Zy on RP? to give S? back, as R P? | Zs. O

Let K be an orientable combinatorial surface, orient all its triangles in a
compatible manner, and suppose that h : |[K| — | K| is a simplicial homeo-
morphism. Suppose, further, that there is a triangle A, oriented by the or-
dering (uvw) whose image h(A) occurs with the orientation (h(u)h(v)h(w))
induced by h. We prove that the same must hold for any other triangle of
K:

Proof. We give an example of an orientable combinatorial surface and a
simplicial homeomorphism which is not orientation-preserving: O

Let K be an orientable combinatorial surface. Suppose that G acts simpli-
cially on | K|. We show that if the action is fixed-point free and each element
of G is orientation-preserving that the complex K?2/G is an orientable com-
binatorial surface:

Proof. Pick an orientation on K. Then, every triangle T € K2 has an
orientation, since G is orientation preserving. Thus,

Jor

geG

has consistent orientation. But this implies that

11— | 97 = 7/G

geG
has well-defined orientation and hence
K?/G

is an orientable combinatorial surface. O

7.3 Euler Characteristics

(1) We prove lemma (7.8):

Proof. This is an application of This was inspired by [3], [7]:

Consider the split exact sequence (as x is addative)
0—>Fror > Fxk®FL = FrnrL — 0
via maps a — (a,a) and (a,b) — a — b. Then by [1} the result follows. O
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(2) We prove lemma (7.9):

Proof. As each barycentric subdivision of some simplex o adds one more

vertex, namely
1

k+1
the result follows. O

A-

(1)0+"'+Uk)

(3) We prove from the previous problem that the Euler characteristic of a graph
T is a topological invariant of |T'|:

Proof. Please see [5], page one-hundered-five, theorem (5.13). O

(4) Let K be a finite complex. Suppose that G acts simplicially on |K|, and
that the action is fixed-point free. We show that

X(K) = |GIx(K2/G)
where |G| = card G:

Proof. Suppose that K if finite. Then, it follows from a previous exercise
that
K/G~K?/G

Thus, for every simplex o in K?2/G, there corresponds |G|o simplexes in
K?2. Thus,

X(K?) = |G|(loo| = lou| + - + (=1)"oa]) = |G| - x(K?/G)
But, as x is topological invariant, and |K| = |K?|, we have
X(K) = x(K?) = |GIx(K?/G)
O

(5) Let K be a combinatorial surface such that | K| is in the plane as in problem
6, and let J denote the boundary curve of the resulting regular polygon.
We show that

Proof. As K is combinatorial, theorem (7.7) implies that x(K) = 2. In
otherwords, we show that

x(I) =1
But, as T" is a tree, lemma (7.5) says that
x(T) =1

The result follows. O
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(6)

Continuing from the previous problem, suppose that I" has an edge, one end
of which is not joined to any other edges. We show that x(K) = 2 implies

|K| = S?%:

Proof. We omit this proof. O

7.4 Surgery

(1)

We thicken each curve in fig. 7.16 and decide whether the result is a cylinder
or a Mobius strip and describe the effect of doing surgery along the curve:

Proof. This is left to the reader as an exercise. O

We show that the surface illustrated in fig. 7.17 is homeomorphic to one of
the standard ones using the procedure of theorem (7.14):

Proof. As
TH#T

is a sphere with two handles attached, we have that figure 7.17 is
KB #57,

where S denotes a sphere with three handles added. By a previous exercise,
we have that figure 7.17 is

2 2
RP#RP #S52

and the result follows.
O

Let Z ¢ Y < Z be three concentric discs in the plane. We find a homeo-
morphism from X to itself which is the identity on the boundary circle of
X and which throws Y onto Z:

Proof. Suppose, without loss of generality, that
ZcY<c X
As such, there exists a retraction r : Y < Z, r|z = 1z. Now, we extend r

to some R: X — X, so that

R(z) =

x reX-Y
r(x) zeY
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Then, clearly R = 1px, and R : Y — Z. It is left to show that R is
continuous. Without loss of generality, let O < Im R be open, such that

OnNX-2)nZ#g

Then,
R O)=R'(OutZn0O)u R (IntZ n O)

by the Jordan curve separation theorem(s), which is clearly open X. A
similar argument show that R~! is continuous. The result follows. O

(4) Suppose that we have two discs in the plane, both of which are bounded by
polygonal curves, and one which lies in the interior of the other. We prove
that the region between them is homeomorphic to an annulus:

Proof. Please see [9]. O

(5) with the notation of lemma (7.13) and problem 19, we find a homeomor-
phism h : D! — X such that h(D) =Y and

h(star(4, K?)) = Z
and prove lemma (7.13):

Proof. As A is a triangle of D, A is homeomorphic to a disc, via t, and we
have the following inclusions:

AcDc K

7.5 Surface Symbols

(1) We show that the two surfaces shown in fig. 7.22 are not homeomorphic:
Proof. O

(2) We determine what happens if we remove the interiors of two disjoint discs
from a closed surface, then glue the two resulting boundary circles together:

Proof. O

(3) We use the classification theorem to show that the operation of connected
sum is well-defined:

Proof. O
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(4) Assume that every compact surface can be triangulated. We show that if
the boundary component of a surface is non-empty, then it consists of a
finite number of disjoint circles:

Proof. O

(5) We show that nay compact connect surface is homeomorphic to a closed
surface from which the interiors of a finite number of disjoint discs have
been removed:

Proof. O

(6) We determine the fundamental group of the space obtained by punching k
holes in the sphere:

Proof. O

(7) Write H(p,r) for H(p) with the interiors of r disjoint discs removed, and
write M (q, s) for M (q) with s discs similarly removed. We show that H (p,r)
can be obtained from a (4p + 3r)-sided polygonal region in the plane by
gluing up its edges according to the surface symbol

alblaflbfl ... apbpaglbglxlylel ... xryrm:l
Proof. O
(8) We find a surface symbol for M(q, s), as defined in the previous problem:
Proof. O
(9) We calculate the fundamental groups of H(p,r) and M (q, s):
Proof. O

(10) We show
e that H(p,r) = H(p',r’) implies p = p’ and r = r":
Proof. O
o that M(q,s) = M(q',s’) implies ¢ = ¢’ and s = 5"
Proof. O
e that there are no values of p, ¢, r, s for which M(p,r) =~ H(q, s):

Proof. O
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(11) Define the genus of a compact connect surface to be the genus of the closed
surface obtained by capping off each boundary circle with a disc. We show
that a compact connect surface is completely determined by wheter or not
it is orientable, together with its genus and its number of boundary circles:

Proof. O
(12) We posit a general result from the two picture in fig. 7.24:

Proof. O
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Simplicial Homology

8.1 Cycles and Boundaries
(1)

8.2 Homology Groups

8.3 Examples

8.4 Simplicial Maps

8.5 Stellar Subdivision

8.6 Invariance
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