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Preface to the Student

These notes from Spring semester 2023 go along with the book Complex Variables and

Applications by Brown and Churchill (known as “BC” in these notes). I will follow
the book pretty closely, but I will often phrase the material in a rather different way.
This is intentional. My suggestion is that you read the notes and the book; they are
pretty much in some kind of one-to-one correspondence. Work lots of the exercises
in these notes and all of the problems in the accompanying assignments.

If you’re planning to take a course in complex analysis, then you should probably
already be familiar with the appearance of complex numbers in the quadratic formula

x =
−b±

√
b2 − 4ac

2a
(1)

for the solutions of the quadratic polynomial equation ax2 + bx+ c = 0 when

b2 − 4ac < 0.

Exercise 1 Derive the quadratic formula (1) by completing the square in ax2+ bx+
c = 0.

In this connection, you should probably have at least a little experience simplifying
algebraic expressions involving complex numbers. For example, you should not be
surprised to know

i2 = −1,
1

i
= −i, and (a+ bi)(a− bi) = a2 + b2 ∈ R,

though you can look forward to becoming much more, shall we say, practiced in
making such algebraic manipulations.

You may also be familiar with the important fact from algebra that the set of all
complex numbers

C = {a+ bi : a, b ∈ R}
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is a “system of numbers” in which every polynomial equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

with coefficients a0, a1, . . . , an ∈ C has a root, i.e., solution, in C. We should be
able to go through and understand a proof of this theorem (called the fundamental
theorem of algebra) which is presented in BC near the end of Chapter 4.

You probably have run across Euler’s formula

eiθ = cos θ + i sin θ

and may even be able to make sense of a series expansion like

ea+bi =
∞
∑

n=0

1

n!
an

(

∞
∑

k=0

(−1)k

(2k)!
b2k + i

∞
∑

k=0

(−1)k

(2k + 1)!
b2k+1

)

.

We will discuss many properties and details concerning the extension of the exponen-
tial function (and other special functions) to C. It is assumed you are not familiar
with this material, and it is one of the main things you should expect yourself to learn
during the course.

Most importantly, we will go a bit beyond complex arithmetic to talk about the
main subject of complex analysis, which is the complex function f : C → C,
and especially the class of these functions which are complex differentiable. I
hope you are in a position to appreciate such a discussion. You may have had some
opportunity to appreciate similar questions in calculus when you discussed the family
of real valued functions f : (a, b) → R defined on an open interval (a, b) which
are differentiable, twice differentiable, and (eventually) infinitely differentiable, and
those represented by a power series, i.e., the real analytic functions, though usually
the emphasis in elementary calculus and even some advanced calculus is elsewhere.
In reference to calculus, it may also be useful to point out that one object of study
in calculus, say third semester calculus, might be the real valued function f : U → R

where U is some open set in the real plane R2, like for example the square domain
U = {(x, y) ∈ R2 : |x| < 1 and |y| < 1} or the disk {(x, y) ∈ R2 : x2 + y2 < r2}.
You might have learned to compute the partial derivatives of such a function in
order to maximize, minimize, or otherwise understand such a function. These kinds
of considerations are not unrelated to the study of complex functions, and we will
use some results from multivariable calculus, though we will think about them again
carefully, i.e., review them, when the time comes.
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Another opportunity for considering functions in some sense like we will attempt
to consider them in complex analysis may be found in linear algebra when one con-
siders, for example, linear mappings L : R2 → R2 of the real plane to itself. Among
these mappings are various rotations, scalings, and reflections with which you may be
familiar. The point is, first of all, that there are geometric aspects involved with such
functions that are very similar to the geometric considerations we will encounter for
complex functions in complex analysis, and more generally, you probably have some
experience considering questions about functions in general, though presumably not
when the domain and codomain of the functions under consideration are subsets of C.
In that sense you should be able to look forward to learning (in this course) something
about a whole new world of functions with their own particular, and often beautiful,
characteristics.

Exercise 2 Identify the functions represented by these power series:

u(x) =
∞
∑

ℓ=0





M(ℓ)
∑

m=0

(−1)m

(ℓ− 2m)!(2m)!



 xℓ

and

v(x) =
∞
∑

ℓ=0





M(ℓ−1)
∑

m=0

(−1)m

(ℓ− 2m− 1)!(2m+ 1)!



 xℓ

where

M(k) = min

{

n ∈ N : n ≥ k − 1

2

}

and N = {1, 2, 3, . . .}.
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Preface

These are notes for MATH 4320 (Undergraduate Complex Analysis) offered in the
Spring semester of 2023 at Georgia Institute of Technology. The text for the course
was Complex Variables and Applications by Brown and Churchill (ninth edition 2014).



Chapter 1

Complex Numbers

1.1 Sums and Products

and Basic Algebraic Properties

The set of complex numbers is perhaps most simply introduced as

C = {a+ bi : a, b ∈ R}. (1.1)

The operations of addition and multiplication of complex numbers are defined by

(a+ bi) + (c+ di) = a + c+ (b+ d)i

and
(a+ bi)(c + di) = ac− bd+ (ad+ bc)i.

It is natural to compare this set of complex numbers with two operations to two other
familiar sets. These are the set of real numbers R (which play a role already in the
“construction” of the complex numbers above) and the set of ordered pairs of real
numbers

R
2 = {(x, y) : x, y ∈ R}. (1.2)

The Real Numbers

Brown and Churchill1 who wrote a textbook (your textbook) on complex analysis
assume “the various corresponding properties of the real numbers to be known.”
Let’s review some of the algebraic properties of the real numbers:

1Complex Variables and Applications (ninth edition 2014, first edition 1948) henceforth referred
to in these notes as “BC.”

9
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1. addition is associative:

(a+ b) + c = a+ (b+ c).

Exercise 1.1 Show addition in C is associative.

Solution: Let a + bi, c + di, and x + iy denote three complex numbers with
a, b, c, d, x, y ∈ R.

(a+ bi+ c+ di) + x+ iy = [a + c+ (b+ d)i] + x+ iy

= (a + c) + x+ [(b+ d) + y]i

= a + (c+ x) + [b+ (d+ y)]i

= a + bi+ [c+ x+ (d+ y)i]

= a + bi+ (c+ di+ x+ iy).

Note that the associativity of addition in C follows directly from the associa-
tivity of addition in R.

2. addition (in R) is commutative:

a + b = b+ a for a, b ∈ R.

Exercise 1.2 Show addition in C is commutative.

3. There exists an additive identity in R: There is an element z ∈ R such that

a+ z = z + a = a for all a ∈ R.

We call the additive identity in R “zero” and denote the additive identity in R

by 0.

4. There exist additive inverses: For each a ∈ R, there exists some b ∈ R with

a+ b = b+ a = 0.

We denote the element b by −a.
Any set G with an operation ∗ : G×G→ G by

∗(a, b) = a ∗ b
satisfying properties 1-4 (with ∗ in place of +) is called2 a commutative group.
The set R is a commutative group under addition.

2If property 2, the commutativity property, is omitted, then the set G is said to be an algebraic

group or just a group for short.
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Exercise 1.3 Rephrase conditions 3 and 4 as they would apply to a general
algebraic group G with operation ∗ and show C is a commutative group under
addition.

Exercise 1.4 Show the identity element in any group is unique.

Exercise 1.5 Show the inverse elements in any group are unique.

Solution: If G is a group with identity element z and a ∈ G with

a ∗ b = b ∗ a = z and a ∗ c = c ∗ a = z (1.3)

for some elements b, c ∈ G, then

c = z ∗ c = (b ∗ a) ∗ c = b ∗ (a ∗ c) = b ∗ z = b. (1.4)

Notice this solution does not use all the information given in (1.3). It only
uses the existence of an identity element z, associativity, and the existence of
elements b and c with b ∗ a = z and a ∗ c = z. With this in mind, let me throw
in some side comments about algebra.

In some contexts (that is algebraic contexts) one might consider various
sets with less structure than that of a group. For example a semigroup

is a set S with an associative operation ∗ : (a, b) 7→ a ∗ b. In a semigroup,
one may consider the notion of a left identity and/or a right identity.
A left identity is an element z ∈ S such that z ∗ a = a for all a ∈ S.
Similarly, a right identity is an element z ∈ S such that a ∗ z = a for all
a ∈ S. Notice our definition of an identity element is an element which
is both a left and right identity.

A monoid M is a semigroup with an identity element. In a monoid,
one may consider the notion of a left inverse and/or a right inverse.
An element a ∈ M has a left inverse b ∈ M if b ∗ a = z. An element
a ∈ M has a right inverse c if a ∗ c = z. Now, let’s say an element
a in a monoid M has a left inverse b and a right inverse c. Then (1.4)
implies the left inverse and the right inverse must be the same element.
Put another way, given a left inverse b for an element a ∈ M , the existence
of a right inverse for that element implies b is a right inverse as well. This
is all valid without commutativity. It is crucial to note, however, that just
having a left inverse is not enough: If M is the collection of all functions
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f : N → N where N = {1, 2, 3, . . .} denotes the natural numbers and the
monoid operation is function composition. The identity element is just the
identity function z(j) ≡ j for j ∈ N. The function p(j) = j + 1 has a left
inverse given by

q(j) =

{

j − 1, j 6= 1
1, j = 1.

But p has no right inverse.

A group may be defined as a monoid in which every element has both a

left and a right inverse.

5. Multiplication in R is associative and commutative.

6. There exists a multiplicative identity. We call this element 1 ∈ R.

Exercise 1.6 Show multiplication in C is associative and commutative.

Exercise 1.7 Show there exists (and identify) a multiplicative identity in C,
and show this multiplicative identity is unique.

Exercise 1.8 Use Exercise 1.4 to show the multiplicative identity in C is
unique.

7. There exist (some) multiplicative inverses in R: For each a ∈ R\{0}, there
exists an element b ∈ R for which

ab = ba = 1.

The multiplicative inverse b of a ∈ R\{0} is written as a−1 or 1/a.

Exercise 1.9 Show that given a + bi ∈ C\{0} there exists a multiplicative
inverse in c + di = (a+ bi)−1 ∈ C\{0}.

Exercise 1.10 Show the multiplicative inverses in C\{0} are unique.

The final algebraic property we will mention is the following:

8. Multiplication is distributive across addition in R:

a(b+ c) = ab+ ac for all a, b, c ∈ R.
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Exercise 1.11 Show multiplication is distributive across addition in C:

w(z1 + z2) = wz1 + wz2 for all z1, z2, w ∈ C.

Any set F with two binary operations (of addition (a, b) 7→ a + b and multplication
(a, b) 7→ ab) to which the properties listed above for R, and shown to hold in the
exercises for C, is called a field. This concludes our initial algebraic comparison of C
with R: Both C and R are fields.

Exercise 1.12 Show Z3 = {0, 1, 2} with a commutative addition satisfying3

0 + j = j for j ∈ Z3

1 + j = j + 1 for j ∈ Z3\{2}
1 + 2 = 0
2 + 2 = 1

and a commutative multiplication satisfying

0j = 0 for j ∈ Z3

1j = j for j ∈ Z3

(2)(2) = 1,

is a field.

Exercise 1.13 Show Z4 = {0, 1, 2, 3} with a commutative addition satisfying

0 + j = j for j ∈ Z4

1 + j = j + 1 for j ∈ Z4\{3}
1 + 3 = 0
2 + 2 = 0
2 + 3 = 1
3 + 3 = 2

and a commutative multiplication satisfying

0j = 0 for j ∈ Z4

1j = j for j ∈ Z4

(2)(2) = 0
(2)(3) = 2
(3)(3) = 1,

is an additive group but not a field.
3In this array, the “+” symbol on the left denotes addition in Z3 and the “+” symbol on the right

denotes addition of the corresponding elements in N0 = {0, 1, 2, 3, . . .}, the set of natural numbers
including zero. A similar convention holds for our definition of addition in Z4.
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Comparison to the real plane R2

You may have noted (and you should note now if you didn’t) that in our defini-
tion/construction of C, the symbol i “functions” in primarily two capacities within
the set C. First of all the symbol i behaves as a “placeholder” indicating that the
two real numbers a and b in the complex number a+ bi are kept essentially separate.
In this way, the real number b preceeding (or sometimes following as in ib) is very
much like a component in the ordered pair (a, b) of real numbers. In fact, there is a
one-to-one and onto function γ : R2 → C given by

γ(x, y) = x+ iy

which we will now consider briefly and will be extremely important for us later. With
regard to the role of i as a placeholder, let us note that when a complex number is
expressed as z = a + bi with a, b ∈ R, then the numbers a and b are called the real
part and the imaginary part of the complex number z ∈ C respectively, and there
is an associated notation:

Re z = a, Im z = b.

Exercise 1.14 Show

Re(z + w) = Re(z) + Re(w) for all z, w ∈ C,

but

Re(zw) 6= (Re z)(Rew) for at least some z, w ∈ C.

Characterize the complex pairs (z, w) ∈ C2 for which Re(zw) = (Re z)(Rew).

The second “function” of the symbol i in the complex numbers is as a particular
“algebraic variable” for which the peculiar condition i2 = −1 holds. You might have
noticed this in the formula for complex multiplication, and if you didn’t, you should
notice it now: If we treat i simply as an algebraic variable like the variable x in the
polynomial a+ bx, then

(a+ bi)(c + di) = ac+ (ad+ bc)i+ bd i2.

You see, the factor ad+bc multiplying the placeholder i, in other words the imaginary
part of the product, agrees with our definition of complex multiplication. Further-
more, and most crucially, if we replace i2 with −1, then the full definition of complex
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multiplication results. This latter “function” of i and the peculiar relation4

i2 = −1 (1.5)

is really what gives complex analysis its distinctive characteristics as a subject. It
has been said that if someone has an idea comparable to this use of i as an algebraic
symbol with this property, i.e., the idea of the construction of the complex numbers,
then that person has done enough as a mathematician for one lifetime. The entire
subject of complex analysis may be viewed as following out the consequences of the
relation (1.5).

The set R2 is usually considered with a different algebraic structure than that
of a field, but a field is involved. A vector space V over a field F is an additive
group with a notion of scaling by elements from the field. That is, there is a scaling
F × V ∋ (α, v) 7→ αv ∈ V satisfying certain properties. More precisely, the vector
space V is required to be a commutative group under addition (that is, vector addition
is associative, commutative, there is an additive identity (zero) vector, and there are
additive inverses) and the scaling is required to satisfy the following four properties:

VS1 α(βv) = (αβ)v for α, β ∈ F and v ∈ V .

VS2 1v = v for all v ∈ V where 1 is the multiplicative identity in the field F .

VS3 α(v + w) = αv + αw for α ∈ F and v, w ∈ V .

VS4 (α + β)v = αv + βv for α, β ∈ F and v ∈ V .

In this context, the field is called a field of scalars. The four properties can be
named/described as follows:

VS1 associativity of scaling,

VS2 scaling by the field identity,

VS3 a scalar distributes across a vector sum,

VS4 a vector distributes across a sum of scalars.

The properties VS3 and VS4 are kinds of distributive properties (in addition to the
distributive property required to hold for multiplication across addition in the field
of scalars).

4It is of course from this relation that the symbol i gets is moniker as an “imaginary” number:
The symbol i is the unthinkable solution to the polynomial equation x2 + 1 = 0. (Once one thinks
of this solution, the other solution is not so unthinkable.)
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The set R2 is most naturally considered as a vector space over the field R, and
you are probably familiar with R2 considered as such. Let us review briefly:

• The addition in R2 is componentwise addition:

(x, y) + (a, b) = (x+ a, y + b).

• The additive identity is the zero vector (0, 0).

• The scaling in R2 is also componentwise:

α(x, y) = (αx, αy).

This is the natural (algebraic) structure on R2, and generally I (like to and will)
consider R2 in precisely this way.

Exercise 1.15 Show that C is a real vector space with the usual complex addition
defined above and scaling given by

α(a+ bi) = αa+ αbi

where α ∈ R, a = Re(a+ bi) and b = Im(a + bi).

With the real vector space structure on C defined in Exercise 1.15, the mapping
γ : R2 → C by γ(x, y) = x+ yi is a vector space isomorphism, meaning not only
is γ one-to-one and onto, but also linear:

γ(αx+ βy) = αγ(x) + βγ(y) for α, β ∈ R and x,y ∈ R
2.

This means that R2 and C are essentially the same real vector spaces, only the “look”
of the vectors is changed. As suggested above, I am rather inclined to leave it (that
is the discussion of comparing R2 and C) at that: R2 and C are isomorphic as (two-
dimensional) real vector spaces.

Given the introduction of C given by Brown and Churchill, however, I will say
more.
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Products on R2

One can introduce various products between pairs of vectors in the vector space R2.
Two familiar products come to mind. First of all, there are inner products, the
most familiar of which is the Euclidean dot product:

(x, y) · (a, b) = ax+ by. (1.6)

This, it will be noted, is not a product operation in the sense that the value of the
product is another vector in R2. The Euclidean product of two vectors in R2 is a
scalar: R2 × R2 → R.

More generally, an inner product on R
2 is a function

〈 · , · 〉 : R2 ×R
2 → R

satisfying the following properties:

IP1 〈x,y〉 = 〈x,y〉 for x,y ∈ R
2

An inner product is symmetric.

IP2 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉 for α, β ∈ R and x,y, z ∈ R
2

An inner product is bilinear.

IP3 〈x,x〉 ≥ 0 for x ∈ R
2 with equality if and only if x = (0, 0).

An inner product is positive definite.

All inner products on R
2 have the form

〈x,y〉 = x ·Ay

where A is a positive definite symmetric 2 × 2 matrix. If the element in

the5 i-th row and j-th column of the matrix A is aij, then symmetric means

aji = aij. Positive definite means exactly the condition required by IP3 which,

it turns out in this case, is equivalent to the condition that there exists a basis

{u1,u2} for R2 consisting of eigenvectors of A, that is with Auj = λjuj , for

some positive (real) numbers λ1 and λ2.

One may also consider the cross-product of vectors in R2. The value of the
cross-product can be thought of as a single number

×((x, y), (a, b)) = bx− ay. (1.7)

5When we use indices here in reference to matrices the symbol i does not represent
√
−1 but

rather an element of {1, 2}.
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Usually, however, the cross-product of two vectors in R2 is considered as a vector,
but it it not a vector in R2, but rather in R3:

(x, y)× (a, b) = (x, y, 0)× (a, b, 0) = (0, 0, bx− ay).

Either way, the cross-product is not a product operation with values back in the
vector space R2.

Having made these observations about the dot product and the cross-product of
vectors in the real vector space R2, let us return to consideration of the one-to-one
correspondence γ : R2 → C given by

γ(x, y) = x+ yi.

First of all, it is quite possible to “induce” a product of vectors in R2 by using the
corresponding complex product in C. Let us do that. We will say

(x, y)(a, b) = γ−1(γ(x, y)γ(a, b))

= γ−1((x+ yi)(a+ bi))

= γ−1(ax− by + (bx+ ay)i)

= (ax− by, bx+ ay). (1.8)

This is an unusual and somewhat unnatural thing to do. I’m only doing it because
this is, roughly speaking, what is done in BC. From the point of view taken above,
the result is a “realization,” or field isomorphic copy, of C in the form of R2.

Technically, Brown and Churchill suggest that C is R
2 with the product defined

by (1.8). Then one is left to execute the unnatural algebraic manipulations suggested
by Exercise 2.1(b-c) in BC.

Exercise 1.16 Translate the algebraic expressions

(a) (
√
2− i)− i(1−

√
2i),

(b) (2− 3i)(−2 + i), and

(c) (3 + i)(3− i)[1/5 + (1/10)i]

into the peculiar ordered pair notation of BC, simplify the expressions, and write the
results in both forms, i.e., the weird/unnatural R2 form and the usual complex form.
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Solution:

(a) [(
√
2, 0)− (0, 1)]− (0, 1)[(1, 0)− (0,

√
2)].

[(
√
2, 0)− (0, 1)]− (0, 1)[(1, 0)− (0,

√
2)] = (

√
2,−1)− (0, 1)(1,−

√
2)

= (
√
2,−1)− (

√
2, 1)

= (0,−2)

= −2i.

(b) (2,−3)(−2, 1) = (−1, 8) = −1 + 8i.

(c) (3, 1)(3,−1)(1/5, 1/10). In principle, we already know multplication in C is as-
sociative (and commutative), so these products can be executed in any order.
Just for “fun,” I’ll compute in both associative orders. The first product is
interesting on its own:

(3 + i)(3− i) = (3, 1)(3,−1) = (10, 0) = 10.

(3, 1)(3,−1)(1/5, 1/10) = (10, 0)(1/5, 1/10) = (2, 1) = 2 + i.

(3, 1)[(3,−1)(1/5, 1/10)] = (3, 1)(7/10, 1/10)

= (2, 1)

= 2 + i.

Of course, this won’t kill anyone, but I’m not sure it will help anyone too much either.

The nominal advantage of inducing the full complex product structure on R2 is
that there is a certain symmetry between the elements 1 = (1, 0) and i = (0, 1).
When it comes to the complex product, however, these elements simply do not play
symmetric roles—they behave anything but symmetrically—as can be easily seen by
computation of the following complex products:

(1)(1) = (1, 0)(1, 0) = (1, 0) = 1

and

(i)(i) = (0, 1)(0, 1) = (−1, 0) = −1.
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Relation(s) among products

Since we have gone this far, let’s try to express this strange complex product on R2

in terms of the Euclidean dot product and the cross-product mentioned above. For
this discussion, let us consider the cross-product as a function × : R2 × R2 → R and
use the notation

(x, y)× (a, b) = xb− ya. (1.9)

Notice that while the dot product

(x, y) · (a, b) = ax+ by (1.10)

is symmetric, the cross-product is antisymmetric:

(a, b)× (x, y) = ay − bx = −(x, y)× (a, b).

Let us call the two products of (1.10) and (1.9) the elementary geometric products
on R2.

Comparing the expression

(x, y)(a, b) = (ax− by, bx+ ay)

for the complex product to the expressions (1.10) and (1.9) suggests some relation(s)
should be easy to obtain. Surprisingly, things are not entirely simple: This complex
product is doing something geometrically which is not immediately expressible in
terms of the elementary geometric products. A first few attempts at obtaining a
relation suggests the introduction of certain natural reflections on R2. These are
the linear functions

ρ+ : R2 → R2 by ρ+(x, y) = (y, x), reflection about the line y = x,
ρ− : R2 → R2 by ρ+(x, y) = (−y,−x), reflection about the line y = −x,
ǫ1 : R

2 → R2 by ǫ1(x, y) = (x,−y), reflection about the x-axis, and
ǫ2 : R

2 → R2 by ǫ2(x, y) = (−x, y), reflection about the y-axis.

It will be noted that another linear function is in play here: ρ− = α◦ρ+ and ǫ2 = α◦ǫ1
where

α : R2 → R
2 by α(x, y) = (−x,−y) is the antipodal map.

The reflection ǫ1 about the x-axis will play a particularly important role for us later
on and may also be referred to as the conjugation map on R2.
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With these linear functions in hand, the “coordinates,” i.e., real and imaginary
parts of the complex product can be expressed in multiple ways. For example,

ax− by = (a,−b) · (x, y)
= (a, b) · (x,−y)
= (−b,−a)× (x, y)

= (a, b)× (y, x).

Exercise 1.17 Rewrite one of the factors in each of the expressions above for the
quantity ax− by in terms of a linear map applied to one of the vectors (a, b) or (x, y).
For example,

(a,−b) · (x, y) = ǫ1(a, b) · (x, y).

Find four expressions for ay + bx having similar forms, so that for example

(a+ bi)(x+ yi) = ǫ1(a, b) · (x, y) + ǫ1(a, b)× (x, y) i. (1.11)

Among the various forms the complex product (a+ bi)(x+ iy) may take in terms of
the elementary geometric products and linear maps of the vectors (a, b) and (x, y) in
R2 as suggested by Exercise 1.17, certain forms like the one given in (1.11) display
more (at least a little more) uniform appearance than others.

Exercise 1.18 Let us say an expression

(a+ bi)(x+ iy) = R1(a, b)⊗ R2(x, y) +R3(a, b)⊙R4(x, y)

for (a+ bi)(x+ iy) obtained as in Exercise 1.17, where Rj ∈ {ρ±, ǫ1, ǫ2, id}, j=1,2,3,4
and ⊗ and ⊙ are elementary geometric products, gets a “uniformity point” if any one
of these three properties hold:

(i) The same reflection appears in both the real and imaginary parts.

(ii) The same elementary product is used in both the real and imagainary parts.

(iii) The identity function id : R2 → R2 appears in both the real and imaginary
parts.
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Show that no form gets three uniformity points and among the forms with two uni-
formity points are

(a+ bi)(x + yi) = ǫ1(a, b) · (x, y) + ǫ1(a, b)× (x, y) i

= ǫ1(a, b) · (x, y) + ρ+(a, b) · (x, y) i
= (a, b) · ǫ1(x, y) + (a, b) · ρ+(x, y) i
= ρ−(a, b)× (x, y) + ǫ1(a, b)× (x, y) i

= (a, b)× ρ+(x, y) + (a, b)× ǫ2(x, y) i

= (a, b)× ρ+(x, y) + (a, b) · ρ+(x, y) i.

Are there any more?

It is a little surprising (to me) that another natural linear transformation of R2 does
not seem to come up “naturally” in this discussion. This linear function is sometimes
called “perp,” and it is also rotation counterclockwise by an angle π/2:

(x, y)⊥ = (−y, x).

Exercise 1.19 Can you find a nice/interesting expression for the complex product
(a+bi)(x+yi) using the orthogonal rotation applied to the vectors γ−1(a+bi) = (a, b)
and γ−1(x+ yi) = (x, y) in R2?

Further Discussion: I can think of three more possible motivations for in-
troducing/thinking of the complex plane as the real plane R2 with the complex
product (a, b)(x, y) 7→ (ax−by, ay+bx). The first is that this avoids the (other-
wise important) identification of R2 with C as real vector spaces (and otherwise
as fundamentally different algebraic sets). Perhaps Brown and Churchill felt
the concept of a function γ : R2 → C was, somehow, too advanced.

The second is that this approach in BC makes the complex plane seem somehow
less exotic and, in particular, gives the instructor a handy answer to the perhaps
inevitable question: “What is the imaginary number i?” The answer from this
point of view is: “The symbol i is nothing but a name for the element (0, 1).”
In a certain sense, this goes back to the symmetry between (1, 0) and (0, 1),
which in fact and in principle is not present when one introduces the complex
product on R

2.

The third “advantage” of the strict identification of C with R
2 is that addition

of complex numbers is immediately translatable into vector addition of “points”
in R

2 as discussed in section 1.4 of BC. One might say also that this correspon-
dence is slightly obscured with the complex notation. Take for example the
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expression of a vector/point (x, y) ∈ R
2 in terms of the standard basis vectors

e1 = (1, 0) and e2 = (0, 1). Specifically, it appears that the decomposition

(x, y) = xe1 + ye2

expresses relatively nontrivial and rather important content. In the complex
plane, however, the corresponding relation a+bi = a·1+b·i becomes essentially
invisible with the “standard basis vectors” given by 1 = 1+ 0 · i and i = 0+ 1·
usually not receiving special comment as such.

From the alternative point of view in which R
2 is a well-known real vector space

and C = {a+ bi : a, b ∈ R} is a fundamentally different, and nominally exotic,
algebraically complete6 field, the “symbol” i is, as described above, both a
placeholder and an algebraic symbol, commuting with itself and all real numbers
(both additively and multiplicatively) and having the property that i2 = 1. In
short, C is a collection of symbols a + bi to which the algebraic operations of
addition and multiplication described above may be applied/executed. There
is indeed perhaps a little mystery in this form of the field C at first, but most
people become used to and comfortable with this representation of C rather
quickly as I suspect is the case also with just about anyone who studies BC.

The complex plane is a geometric representation of the field C, which though
it looks rather like R2 and is isomorphic to R

2 in certain respects, is fundamen-
tally different in certain ways as well. Prominent among these differences is the
labeling of points. In particular, the points along the vertical (or imaginary)
axis in C are labeled bi rather than (0, b).

Finally, the discussion above illustrates, perhaps, that the introduction of a

complex product on R
2 is somewhat unnatural and cumbersome. On the other

hand, it may be objected that this product is no more nor less cumbersome

than the complex product in C.

Exercise 1.20 We have given above a general definition of a vector space over a
field. Let me repeat that definition here: A set V is a vector space over the field
F if there is an operation of addition + : V × V → V and a scaling F × V → V
satisfying the following properties:

VSadd1 (v + w) + z = v + (w + z) for all v, w, z ∈ V .

6That is, every polynomial of degree m ≥ 1 with coefficients in C factors in the from c(z−z1)(z−
z2) · · · (z− zm) where z1, z2, . . . , zm ∈ C. The polynomial x2 +1 with real coefficients does not have
a similar factorization with respect to the real field.
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VSadd2 There is a zero vector 0 ∈ V for which

0+ v = v + 0 = v for all v ∈ V .

VSadd3 For each v ∈ V , there is an additive inverse −v ∈ V for which

(−v) + v = v + (−v) = 0.

VSadd4 v + w = w + v for all v, w ∈ V .

VS1 (αβ)v = α(βv) for all α, β ∈ F and v ∈ V .

VS2 1v = v for all v ∈ V where 1 ∈ F is the multiplicative identity in the field.

VS3 α(v + w) = αv + αw for all α ∈ F and v, w ∈ V .

VS4 (α + β)v = αv + βv for all α, β ∈ F and v ∈ V .

Two possible choices for the field are R and C. If the field is taken to be R, the vector
space is called a real vector space. If the field is taken to be C, the vector space
is called a complex vector space. The standard finite dimensional examples of the
former are the spaces Rn for n = 1, 2, 3, . . ., and the standard examples of the latter
are the spaces

C
n = {(z1, z2, . . . , zn) : z1, z2, . . . , zn ∈ C}.

Here is the exercise: Show the vector space W is a complex vector space where, as a
set, W = R2 = {(x, y) : x, y ∈ R}, the addition is componentwise

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

as usual, and the scaling C× V → V is given by

(a+ bi)(x, y) = (ax− by, ay + bx).

Geometric interpretation of the complex product

There is a nice geometric interpretation of the complex product (a + bi)(x + yi) in
terms of the vectors γ−1(a+ bi) = (a, b) and γ−1(x+ yi) = (x, y) in R

2, and it is very
very important in complex analysis, but we must go in rather a different direction to
find it. In particular, we must fundamentally turn away from the idea of symmetry
and any suggestion of a symmetry between 1 ∈ C and i ∈ C.
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Consider the first factor a+bi ∈ C and its real counterpart (a, b) ∈ R2. If a+bi 6= 0,
then

√
a2 + b2 > 0, and

u =

(

a√
a2 + b2

,
b√

a2 + b2

)

is a point on the unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} ⊂ R2. This is an
extremely important observation. In particular, such a point determines a unique
argument, that is, the angle θ between the segment connecting (0, 0) to (a, b) and
the positive x-axis. We have to be a little careful when we say the argument is unique.
The angle θ determined by the relation

u =

(

a√
a2 + b2

,
b√

a2 + b2

)

= (cos θ, sin θ) (1.12)

is not entirely unique of course; it is unique up to an additive (integer) multiple of
2π:

θ = θ0 + 2πk, k ∈ Z = {0,±1,±2,±3, . . .},
where θ = θ0 is any particular angle satisfying (1.12). There is a unique choice of
θ0 in any half open interval of length 2π like (−π, π] or [0, 2π). What I have just
described is extremely important to understand.

Now given an angle, that is an argument, measured either from the positive x-axis
in R2 or from the positive real axis in C, there is an associated rotation of the space
counterclockwise by the angle θ. The rotation Rθ : R

2 → R2 is given by

Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

And this, I think, makes rather clear the geometric interpretation of the product

(a + bi)(x+ yi) = xa− yb+ (xb+ ya)i ∈ C. (1.13)

Specifically, taking the argument θ defined by (1.12) and determined (very asymmet-
rically) by the first factor a + bi, the product in (1.13) can be written immediately
as

(a + bi)(x+ yi) =
√
a2 + b2[x cos θ − y sin θ + (x sin θ + y cos θ)i].

That is, up to homogeneous scaling by the factor
√
a2 + b2, the Euclidean length of

the vector (a, b) = γ−1(a+ bi) ∈ R2, the complex product has

real part the x-component of the counterclockwise rotation Rθ(x, y), and
imaginary part the y-component of the counterclockwise rotation Rθ(x, y).
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In terms of the vector space isomorphism γ : R2 → C:

(a+ bi)(x+ yi) =
√
a2 + b2 γ−1( Rθ ◦ γ(x+ yi) ). (1.14)

To say it a third (!) way: The complex product of a + bi and x + yi corresponds
to rotating the real vector (x, y) in R2 counterclockwise by the argument θ of a + bi
and scaling the result by the Euclidean length/norm of the corresponding real vector
(a, b). In the complex plane/field the value

√
a2 + b2 is called, simply, the absolute

value of the complex number a + bi, but we will come (back) to this topic in more
detail later.

Exercise 1.21 Given an argument θ, express the rotation Rθ of R
2 counterclockwise

by the angle θ in terms of matrix multiplication (as used for example in linear algebra).

Additional “follow up” notes

The material in my section 1 above, as suggested by the title, corresponds roughly to
the material in sections 1 and 2 of BC Chapter 1.

Expressions using “set brackets and colons” like the ones appearing in (1.1) and
(1.2) are called “set specifications.” Hopefully, you have a basic idea of what is being
expressed in a set specification. If not, at least a first good step is to read such an
expression correctly. The right side of (1.2) for example should be (formally) read
something like this:

The set of all ordered pairs such that each component is a real number.

Every time you read a set specification, you can think, the opening curly bracket is
read “the set of all” and the colon may be read “such that.” Once you get the hang
of it and internalize the meaning of such expressions, you can vary the reading. For
example,

{x ∈ R : x > 5}
can be read “The set of real numbers greater than 5,” that is to say “the open interval
in R from 5 to +∞.”

Brown and Churchill’s complex product on R2 seems somewhat unnatural and
cumbersome. On the other hand, it really is some form of the usual complex product
which many consider rather natural, at least in C. In fact, everyone who learns
complex analysis should eventually get used to this product on C and consider it
relatively natural, at least be able to manipulate it in various ways, and probably
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even find it kind of elegant. On the third (!) hand, most people find the complex
product somewhat cumbersome at first however it is introduced, so if you do, just be
patient and keep working on it.

1.2 BC Section 1.3

Carefully solving a simple equation

Let α ∈ C\{0} and assume
αz = 0. (1.15)

If equation (1.15) holds for some z ∈ C, then since α has a multiplicative inverse
α−1 ∈ C we know

z = (α−1α)z = α−1(αz) = α−1(0). (1.16)

Exercise 1.22 Prove carefully that the product (w)(0) = 0 for any w ∈ C.

Solution: (w)(0) = w(0 + 0) = (w)(0) + (w)(0). Therefore,

(w)(0)− (w)(0) = [(w)(0) + (w)(0)]− (w)(0)

= (w)(0) + [(w)(0)− (w)(0)]

= (w)(0) + 0

= (w)(0).

Thus, (w)(0) = (w)(0)− (w)(0) = 0. �

Applying Exercise 1.22 to (1.16) we find z = 0. We have established the following
(not so surprising) result:

Theorem 1 If αz = 0 with α ∈ C\{0} and z ∈ C, then z = 0 ∈ C.

The following exercises give some useful assertions equivalent to the assertion of
Theroem 1

Exercise 1.23 Use Theorem 1 to show the following:

If zw = 0 for z, w ∈ C, then either z = 0 or w = 0.

Note that the conclusion here allows the possibility z = w = 0.

Exercise 1.24 Use Theorem 1 to show the following:
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If z, w ∈ C\{0}, then either zw 6= 0.

In our solution of Exercise 1.21 we “subtracted” the complex number (w)(0) from
both sides of an equation. If we wanted to be even more careful (and more “axiomati-
cally correct”) we would first define subtraction in terms of the algebraic properties
discussed previously. That is, if z, w ∈ C, then w has an additive inverse −w ∈ C

and we define
z − w = z + (−w).

Exercise 1.25 (displayed equation (3) on page 6 in BC) Given the complex numbers
z = x+ yi and w = a + bi, find the real and imaginary parts of w − z (and carefully
justify your “computation.”)

Similarly, there is a nominal difference between the “division” z/w where w ∈ C\{0}
and “multiplication by the multiplicative inverse” zw−1.

Exercise 1.26 (displayed equation (3) on page 6 in BC) When we discussed axiom 7
for the real numbers (the existence of multiplicative inverses) we were a bit sloppy
on the distinction between division and multiplication by the multiplicative inverse.
How should our discussion of this axiom be modified to become more axiomatically
correct?

If you’re really into this sort of thing, here are a(nother) couple exercises for you:

Exercise 1.27 (a) Explain the difference between the complex number bi and the
complex product (i)(b). Decide which expression arises first from an axiom
defining the complex numbers and prove the other one is equal to the first one.

(b) Give a careful solution of the simple equation αz = 1 when α ∈ C\{0}.
There follows in BC a sequence of elementary, important, and somewhat tedious

computations/identities. The most interesting is perhaps

z

w
=

zw

|w|2 or
x+ iy

a + bi
=

(x+ iy)(a− bi)

(a + bi)(a− bi)
=
ax+ by

a2 + b2
+
ay − bx

a2 + b2
i (1.17)

though the accompanying notation (and explanation) is not given. With anticipation
of some repetition later, let us note the following: If z = x+ iy with Re(z) = x and
Im(z) = y as usual,

z = x− iy is the complex conjugate of z and

|z| =
√

x2 + y2 is the complex modulus (or absolute value) of z.
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These are just definitions. With these definitions it is straightforward to verify ev-
erything in (1.17).

Let’s consider one more tedious observation: According to BC “it can be shown
that”

(

1

z1

)(

1

z2

)

=
1

z1z2
for z1, z2 ∈ C\{0}.

What this means (in words) is that “the product of the (unique) multiplicative in-
verses of z1 and z2 is the (unique) multiplicative inverse of the product z1z2.” In
order to “show” this astounding assertion we need to (ever so carefully) compute the
product(s)

(

1

z1

)(

1

z2

)

z1z2

(

and z1z2

(

1

z1

)(

1

z2

) )

obtaining (if everything goes okay) the multiplicative identity 1 ∈ C. Let’s see if we
can do it:

(

1
z1

)(

1
z2

)

z1z2 =
(

1
z1

)(

1
z2

)

z2z1 (commutativity)

=
(

1
z1

) [(

1
z2

)

z2

]

z1 (associativity)

=
(

1
z1

)

[1] z1 (1/z2 = z−1
2 )

=
(

1
z1

)

z1 (1 is 1 ∈ C)

= 1 (1/z1 = z−1
1 ).

We now know (1/z1)(1/z2) = 1/(z1z2). Q.E.D.

Welcome to the exciting world of (complex) arithmetic.

The binomial theorem

The last observation of section 1.3 of BC is also familiar (and pretty easy) but it is
also very important and involves a couple constructions that may be worth reviewing.

If z, w ∈ C and n ∈ N = {1, 2, 3, . . .}, then

(z + s)n =
n
∑

k=0

(

n
k

)

zkwn−k

=
n
∑

k=0

(

n
k

)

zn−kwk
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where
(

n
k

)

=
n!

k!(n− k)!

is the “combination” of n things taken k at a time,7 also suggestively known in some
circles as the binomial coefficient.

Exercise 1.28 Prove the binomial theorem for complex numbers using induction
(and the arithmetic axioms).

Exercise 1.29 How many ways are there to choose k objects from among n identical
objects?

1.3 Some geometry of complex numbers

Here are my notes on sections 1.4-5 of BC.

1.3.1 Addition of complex numbers

The sum z + w of complex numbers z and w corresponds to the diagonal (through
the origin 0 ∈ C) of the parallelogram

Q = {sz + tw : 0 ≤ s, t ≤ 1}

determined by the complex numbers; see Figure 1.1. The difference z−w corresponds,
roughly speaking, to the other diagonal of Q. To be more technically accurate, we
should remember that z − w is the sum of z and the additive inverse of w, so really,
z − w corresponds to the diagonal (through the origin) of a translation

Q− = {sz − tw : 0 ≤ s, t ≤ 1}

of Q as illustrated in Figure 1.2. It is natural, of course, to think in terms of the
familiar “vector” geometry in which z−w corresponds to the diagonal in Q “pointing
from w to z,” i.e., the “vector” which when added/concatenated to w lands you at z.

7That is, the number of ways k objects can be chosen from among a set of n distinct objects
(where the order of the choosing does not matter).
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Figure 1.1: The parallelogram Q associated with the complex numbers z and w and
the sum z + w.

Figure 1.2: The parallelogram Q− associated with the complex numbers z and w and
the difference z −w. We have also drawn the “vector” corresponding to z −w which
points from w to z.
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Figure 1.3: The modulus of a complex number z = a+ bi.

In short, addition and subtraction in C are geometrically isomorphic to vector
addition and subtraction in R

2 (using the canonical correspondence γ : R
2 → C

discussed in section 1.1 above.) Also, the modulus of z = a + bi is given by

|z| =
√
a2 + b2

and corresponds to the length of the segment from 0 to z, or alternatively the segment
in R2 connecting γ−1(0) = (0, 0) to γ−1(z) = (a, b).

The triangle inequality
|z + w| ≤ |z| + |w|

holds in C.

Exercise 1.30 Draw an illustration “showing” the validity of the triangle inequality
for the complex modulus, and determine from the illustration the condition(s) under
which equality holds.

The observations above allow us to adopt certain geometric notation and termi-
nology from R2. Given p ∈ R2 and r > 0, the ball of radius r with center p is

Br(p) = {x ∈ R
2 : ‖x− p‖ < r}
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where
‖x− p‖ =

√

(x− p) · (x− p) =
√

(x1 − p1)2 + (x2 − p2)2

in terms of the Euclidean norm and the Euclidean dot product applied to the difference
of vectors x = (x1, x2) and p = (p1, p2) in R2. The boundary of Br(p) is the circle

∂Br(p) = {x ∈ R
2 : ‖x− p‖ = r}.

In particular, S1 = ∂B1(0, 0) is the unit circle in R2. There is perhaps no standard
notation for the corresponding geometric objects in C. Many authors write

Dr(z0) = {z ∈ C : |z − z0| < r}

for the ball, i.e., disk, centered at z0 ∈ C with radius r > 0. When I am working with
C, I am inclined to just use the (admittedly ambiguous) notation Br(z0), ∂Br(z0),
S1 = {z ∈ C : |z| = 1} from R2 and let the context determine the meaning.

It is also perfectly natural to consider other geometric objects, lines, segments,
ellipses, parabolas, etc., in C. For example, (Example 3, page 10 of BC)

{z ∈ C : |z − 4|+ |z + 4| = 10}

is the set of z = a+ bi ∈ C for which
√

(a− 4)2 + b2 +
√

(a+ 4)2 + b2 = 10.

That is,
2a2 + 32 + 2b2 + 2

√

(a2 − 16)2 + (2a2 + 32)b2 + b4 = 100

or
(a2 − 16)2 + (2a2 + 32)b2 + b4 = (34− a2 − b2)2

or
−32a2 + (16)2 + (2a2 + 32)b2 = (34)2 − 68(a2 + b2) + 2a2b2

or
9a2 + 25b2 = (17− 8)(17 + 8) = (9)(25)

or
a2

25
+
b2

9
= 1.

Notice that in the “real form” of the equation of an ellipse, the lengths of the minor
and major semiaxes play a priminent role, while in the complex form the focal length
c = 4 is immediately visible along with the length 10 of the major axis.
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This is a good time to return to our comparison of C to R as fields and point out
two more properties of R, one of which C shares and one of which C does not have.
Let’s start with the second property:

R is an ordered field. Given a, b ∈ R, exactly one of the following holds:

a < b,

a = b, or

b < a.

There is no natural order relation on C. It makes no sense, in general, to write
z < w or z > w for z, w ∈ C. If we ever write z < w or z > w (or even z ≤ w or
z ≥ w) for z, w ∈ C, then we (must) mean z and w are already known to satisfy
z, w ∈ R ⊂ C, and we are using the ordering on R. We can of course consider the
condition

|z| < |w| for z, w ∈ C.

This is because |z|, |w| ∈ R and we can (again) use the ordering on R. Incidentally,
the real vector space R2, like the field C, is not ordered.

All these sets R, C, and R2 are metric spaces. That is, there exists a distance
function

d : X ×X → [0,∞)

satisfying

MD1 d(x, y) = d(y, x) for x, y ∈ X ,

MD2 If d(x, y) = 0, then x = y, and

MD3 d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X .

A set X with such a function d : X ×X → [0,∞) defined on it is said to be a metric
space, and the function d is called a metric distance. A metric distance is said to
be symmetric (MD1), positive definite (MD2), and to satisfy a (metric) triangle
inequality (MD3). Notice that a set X need not be a vector space in order to be a
metric space, though the three examples given by R, C, and R2 all happen to be real
vector spaces.

The metric distances on R, C and R2 are

|a− b| (absolute value of the difference),



1.3. SOME GEOMETRY OF COMPLEX NUMBERS 35

|w − z| (modulus of the difference), and

‖(y1, y2)−(x1, x2)‖ =
√

(y1 − x1)2 + (y2 = x2)2 (Euclidean norm of the difference)

respectively.

Exercise 1.31 Show that for complex numbers, the metric triangle inequality

|z − w| ≤ |z − ζ |+ |ζ − w| for z, w, ζ ∈ C (1.18)

implies the complex (field) triangle inequality

|z + w| ≤ |z| + |w| for z, w ∈ C. (1.19)

Exercise 1.32 Show the condition (1.19) implies the condition (1.18) in C as well.
Thus, the metric triangle inequality and the field triangle inequality are equivalent.

Brown and Churchill postpone the proof of the complex triangle inequality and give
it as an exercise in a later section. Also, they seem to ignore the case of equality.
These are not difficult. Since |z + w| and |z| + |w| are nonnegative quantities the
triangle inequality is equivalent to the condition

|z + w|2 ≤ (|z|+ |w|)2 = |z|2 + 2|z||w|+ |w|2.

On the other hand,

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = |z|2 + zw + wz + |w|2.

Therefore, the triangle inequality is equivalent to the condition

zw + wz ≤ 2|z||w|.

Finally,
zw + wz = zw (zw) = 2Re(zw),

and Re(ζ) ≤ |ζ | for any ζ ∈ C. In particular,

Re(zw) ≤ |zw| = |z| |w| = |z| |w| = |zw|. (1.20)

Exercise 1.33 Work backwards from (1.20) to establish (1.19).

In order for you to follow all the details of the argument above easily, perhaps some
additional exercises would be helpful.
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Exercise 1.34 Show that given any complex number z = a+ bi with a = Re(z) and
b = Im(z), one has

Re(z) ≤ |Re(z)| ≤ |z|
and

Im(z) ≤ | Im(z)| ≤ |z|.

Exercise 1.35 Show that given any complex numbers z = a + bi with a = Re(z)
and b = Im(z) and w = x+ yi with x = Re(w) and y = Im(w), one has

|zw| = |z| |w|.

Exercise 1.36 Show that given any complex number z = a+ bi with a = Re(z) and
b = Im(z) one has

|z| = |z|.

Let’s consider the case of equality. Retracing the steps of Exercise 1.33 above, we see
the condition |z + w| = |z|+ |w| is equivalent to

Re(zw) = |zw|. (1.21)

Given any complex number ζ = a+ bi, the condition Re(ζ) = |ζ | is
a =

√
a2 + b2.

Squaring both sides gives immediately that b = 0. Thus, ζ = a ∈ R and furthermore,
a = |ζ | ≥ 0. Thus we conclude that if ζ satisfies Re(ζ) = |ζ |, then ζ must be
a nonnegative real number. Applying this observation to the condition (1.21) for
equality in the triangle inequality we find equality holds in the triangle inequality if
and only if

zw = α ≥ 0. (1.22)

Remember that when we write an inequality like (1.22) involving a complex number,
then we are asserting the complex number is real (and nonnegative). The usual way
to interpret condition (1.22) is in terms of cases as follows:

Equality holds in the triangle inequality if and only if

(i) z = 0 or w = 0 or

(ii) there is some a > 0 for which z = aw.

Exercise 1.37 Show the characterization of equality in the triangle inequality given
by (1.22) is indeed equivalent to the condition that (i) or (ii) holds.
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1.4 An estimate

The remainder of section 5 in BC is devoted to showing a certain inequality for
polynomials expressing the fact that the modulus of a polynomial P (z) must “grow”
at infinity, i.e., as the modulus of the argument z tends to infinity. This will be used
later (much later) in the proof of the fundamental theorem of algebra.

Theorem 2 (Example 3 of section 1.5 in BC) If P is a polynomial of order n ≥ 1
with complex coefficients a0, a1, . . . , an so that

P (z) =

n
∑

j=0

ajz
j ,

then there is some R > 0 for which

1

|P (z)| <
2

|an|Rn
for |z| > R. (1.23)

It is implicit in the estimate (1.23) that P (z) 6= 0 for |z| > R.

Proof: Let’s consider first the case n = 1 and assume |z| > R1 (where R1 is some
positive number). In this case

P (z) = a0 + a1z

with a1 6= 0. We wish to get an estimate on |P (z)| from below. Note that

|a1|R1 < |a1| |z| = |a1z| = |P (z)− a0| ≤ |P (z)|+ |a0| (1.24)

by the triangle inequality. This gives us an estimate on |P (z)| from below:

|P (z)| > |a1|R1 − |a0| = |a1|
(

R1 −
|a0|
|a1|

)

. (1.25)

By making R1 larger than the fixed nonnegative number |a0|/|a1| we can ensure
|P (z)| > 0, and in particular does not vanish.

Corollary 1 If P (z) = a1z + a0 with a1 6= 0, then there is some R0 > 0 for which

|P (z)| > 0 for |z| > R0. (1.26)
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Exercise 1.38 Generalize Corollary 1 to obtain the estimate (1.26) for any polyno-
mial P of degree n ≥ 1.

The actual estimate we want to get has the form

|P (z)| > α|a1|R
for some factor α > 0, instead of zero on the right as in (1.26). Looking at (1.25)
it is clear we are not going to get α = 1. Fortunately, the proportion of R1 we
do get becomes larger when R1 becomes larger. To see this observe that if we take
R1 > 2|a0|/|a1|, then

|a0|
|a1|

<
1

2
R1 or R1 −

|a0|
|a1|

> R1 −
1

2
R1 =

1

2
R1,

and we can conclude from (1.25) that for |z| > R1 there holds

|P (z)| > 1

2
R1|a1|.

This gives us the desired estimate in the case n = 1 if we take R = R1:

1

|P (z)| <
2

|a1|R
.

Exercise 1.39 How large do you need to take R (in the case n = 1) to conclude

1

|P (z)| <
3

2|a1|R
for |z| > R?

For n ≥ 2, let us assume R > 1 so that

|z|j ≤ |z|n−1 for |z| > R and 0 ≤ j ≤ n− 1.

Then following (1.24) we estimate as follows:

|an||z|n = |anzn|

=

∣

∣

∣

∣

∣

P (z)−
n−1
∑

j=0

ajz
j

∣

∣

∣

∣

∣

≤ |P (z)|+
∣

∣

∣

∣

∣

n−1
∑

j=0

ajz
j

∣

∣

∣

∣

∣

≤ |P (z)|+
n−1
∑

j=0

|aj||z|j .
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Our estimate from below then becomes

|P (z)| ≥ |an||z|n −
n−1
∑

j=0

|aj||z|j

≥ |an||z|n−1

(

|z| −
n−1
∑

j=0

|aj|
|an|

|z|j
|z|n−1

)

> |an|Rn−1

(

R −
n−1
∑

j=0

|aj|
|an|

)

.

Taking

R > max

{

1, 2

n−1
∑

j=0

|aj|
|an|

}

we can say
n−1
∑

j=0

|aj |
|an|

<
1

2
R

and

|P (z)| > 1

2
|an|Rn.

The estimate
1

|P (z)| <
2

|an|Rn
for |z| > R

follows. �

Corollary 2 If P : C → C is a nonconstant polynomial, then there is some r > 0
and some M > 0 for which

|P (z)| > r for |z| > M.

In particular, |P (z)| > 0 for |z| > M , so P has no zeros exterior to BM(0).

1.5 Complex conjugates

This is section 1.6 in BC. We’ve already discussed/defined the complex conjugate of
z ∈ C by

z = Re(z)− i Im(z).
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The “operation” of conjugation is very versatile. Primarily, one needs to check the
properties and then remember them. If you do that, you will have obtained a rather
important and powerful computational tool in complex analysis.

Exercise 1.40 Verify (and remember) the following properties of complex conjuga-
tion:

(a) z = z.

(b) |z| = |z|.
(c) z + w = z + w.

(d) zw = zw.

(e) z + z = 2Re(z).

(f) z − z = 2i Im(z).

(g) |z|2 = zz.

(h) z ∈ R if and only if z = z.

1.6 Elementary roots and powers

In sections 1.7-11 of BC, a discussion is given of powers and roots of complex numbers
based on the exponential or “polar” form

z = |z|eiθ = |z|(cos θ + i sin θ)

where θ = arg(z) is the argument of z as discussed above. In this discussion, the
exponential notation is used “formally,” that is to say somewhat non-rigorously as
simply a notation for the complex expression cos θ + i sin θ. Thus, one should verify
the usual exponential rules (or at least many/most of them) hold directly from this
formal notational definition.

Recall that from our discussion above, every nonzero complex number determines
a well-defined argument θ by























cos θ = Re

(

z

|z|

)

sin θ = Im

(

z

|z|

)

.

(1.27)
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Thus,

z = |z| z

|z| = |z|
[

Re

(

z

|z|

)

+ i Im

(

z

|z|

)]

= |z|(cos θ + i sin θ).

Now, as mentioned above, BC introduces the relation

cos θ + i sin θ = eiθ (1.28)

simply as notation. This is called Euler’s formula. It should be noted that one can
(perhaps) give a definition of ew where w is a complex number independently and
then “derive” Euler’s formula instead of simply introducing notation.

Recall also that the argument θ is unique in the sense that there is a unique
value of θ determined by (1.27) in any half open interval of length 2π. It is specified
in BC that the principal argument is that value of θ in the interval −π < θ ≤ π
and this particular value is denoted by

Arg(z)

(with a capital “A.” The use of arg(z) and Arg(z) is quite common, but the choice
of the interval −π < θ ≤ π for the principal value of the argument is not a universal.
Sometimes the principal argument is taken with 0 ≤ θ < 2π. In any case, we should
know that when we see Arg(z) in BC, the unique argument with −π < θ ≤ π is
intended.

We should perhaps check that the notation of Euler’s formula agrees with what
we know about the exponential function exp : R → R by exp(x) = ex defined for real
values of x. For example, if θ = 0, then our notational convention gives

ei 0 = cos(0) + i sin(0) = 1 + 0 i = 1.

This agrees with the fact that e0 = 1. This is the only way to get a real power of e
in the formula eiθ by taking θ ∈ R. The value of ew where w is a complex number is
not introduced in BC until Chapter 3. This is a little bit cumbersome, but for now,
we should remember that ew where w is a complex number is only defined along the
imaginary axis where w = iθ for some real number θ.

In Chapter 3 of BC one finds the definition

ew = eRe(w)ei Im(w) = eRe(w)[cos Im(w) + i sin Im(w)].

For comparison, you may think about how the real exponential function is defined
in calculus. There are several options that make pretty good sense. One reasonable
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approach is to use a power series:

ex =
∞
∑

n=0

1

n!
xn. (1.29)

Another possibility, if one knows about existence and uniqueness for ODEs, is to
define exp : R → R to be the unique solution of the initial value problem

{

y′ = y, x ∈ R

y(0) = 1.
(1.30)

One must admit that a lot of work is involved in showing these two solid definitions
lead to the same function exp(x) = ex and then (on top of that) showing the resulting
function has all the nice properties one expects of an exponential.

Exercise 1.41 Show the power series solution of the initial value problem (1.30) is
given by (1.29).

Exercise 1.42 Use one of the definitions of the real exponential function above to
show

ea+b = ea eb for a, b ∈ R.

The power series approach for defining the real exponential mentioned above can be
generalized to give a (rigorous) definition of the complex exponential function. This
requires a discussion of (complex) power series (Chapter 5 in BC which will sort of
be at the end of our course). In fact, the differential equations approach can be
generalized as well, but for that one needs to know something (at the very least)
about complex derivatives. We’ll be coming to that relatively soon (Chapter 2 in
BC). For now, we should just be careful that we only use ew when w ∈ iR ∪ R.

We can consider, for example, the expressions

ei(a+b) and eiaeib

where a, b ∈ R. The first expression is

ei(a+b) = cos(a+ b) + i sin(a + b) = cos a cos b− sin a sin b+ (sin a cos b+ sin b cos a)i.

The second expression is

eiaeib = (cos a+i sin a)(cos b+i sin b) = cos a cos b−sin a sin b+(cos a sin b+sin a cos b)i.

Comparing the two, we obtain the “formula”

ei(a+b) = eiaeib.
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Exercise 1.43 Verify de Moivre’s formula:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Exercise 1.44 Verify the following for a, b, θ, ψ ∈ R:

(a) (aeiθ)(beiφ) = abei(θ+φ).

(b) eiθ 6= 0 (ever!).

(c) If b 6= 0, then
aeiθ

beiφ
=
a

b
ei(θ−φ).

(d) (aeiθ)n = aneinθ for n ∈ Z = {0,±1,±2,±3, . . .}.
Section 1.9 in BC concerns the geometric iterpretation of the complex product.

We have essentially already covered this, but there is one thing to note: It is, of
course, the case that

eiθeiφ = ei(θ+φ),

so it makes sense to write
arg(eiθeiφ) = arg ei(θ+φ),

but it does not necessarily follow from this that if

eiθeiφ = eiψ,

then ψ = θ + φ, nor does it make sense to write φ = ψ − θ. What one can actually
write is this:

ψ = θ + φ+ 2πk for some k ∈ Z = {0,±1,±2,±3, . . .}.
Similarly, we can say

φ = ψ − θ + 2πℓ for some ℓ ∈ Z = {0,±1,±2,±3, . . .}.
Here is a computation inspired by Exercise 5 part (a) in BC:

i(1− i
√
3)(

√
3 + i) = eiπ/2 (2) e−iπ/3 (2) eiπ/6

= 4eiπ(1/2−1/3+1/6)

= 4eiπ/3

= 4

(

1

2
+ i

√
3

2

)

= 2(1 + i
√
3).
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In the first step, when I look at a complex number like 1−i
√
3, I compute it’s modulus

and find the value 2. This tells me 1− i
√
3 is on the circle or radius 2 centered at the

origin, and its exponential form is 2eiθ. Then I picture the quadrant of the complex
plane, or more precisely, the quadrant of the unit circle in which (1/2− i

√
3/2) = eiθ

must be located. In this case, the number is in the fourth quadrant. Based on the
fact that the abscissa (real part) is smaller than the (absolute value of the) ordinate
(imaginary part) and the fact that I recognize these numbers, I can determine the/an
argument. In short, I recognize

cos
(π

3

)

=
1

2
and sin

(π

3

)

=

√
3

2
.

(It helps, of course, to be familiar with the values of the trigonometric functions of
certain often used-angles like π/6, π/4, π/3 and π/2. The more you know, the more
you know!)

Applying the same process to the other factor, I found (of course)

√
3 + i = 2eiπ/6.

Let’s cube this number:

(
√
3 + i)3 = 8eiπ/2 = 8i.

So that’s sort of interesting. If we take the same number to the sixth power, we get

(
√
3 + i)6 = 26(−1) = −64,

and if we go all the way to the twelfth power

(
√
3 + i)12 = 212ei(2π) = 212

(

= 4096
)

.

Let’s start with each of these numbers 8i, −64 = 26 and 212 and attempt to reverse
taking the power, that is, let’s try to take the corresponding root. In the last case, the
situation is quite interesting, because a very different twelfth root of 212 is obvious,
namely 2. That is,

212 = 212 and (
√
3 + i)12 = 212.

This might not be surprising if you know the complex dodecic polynomial equation
z12 − 212 = 0 is (at least likely to) have twelve roots. You might imagine at first, the
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root 2 is a repeated root, repeated twelve times, but then you might remember how
to factor

z12−212 = (z−2)(z11+2z10+22z9+23z8+24z7+25z6+26z5+27z4+28z3+29z2+210z+211),

and 2 is not (even close to) a root of the hendecic polynomial equation

z11 + 2z10 + 22z9 + 23z8 + 24z7 + 25z6 + 26z5 + 27z4 + 28z3 + 29z2 + 210z + 211 = 0,

so if we believe the fundamental theorem of algebra, there ought to be at least one
more root out there. And we know there is:

√
3 + i. To find the roots, let’s look for

complex numbers in exponential form z = reiθ with

r12e12iθ = 212 = 212e2πi.

Taking the modulus of each side we must have r12 = 212. We have our trusty root
r = 2. This is really the only one we need and, it turns out, the only positive one we
can get. We can see this by noting that when z ≥ 0

z11 + 2z10 + 22z9 + 23z8 + 24z7 + 25z6 + 26z5 + 27z4 + 28z3 + 29z2 + 210z + 211 ≥ 211.

We can also do some more factoring:

z12 − 212 = (z6 − 26)(z6 + 26)

= (z2 − 22)(z4 + 22z2 + 24)(z6 + 26)

= (z − 2)(z + 2)(z4 + 22z2 + 24)(z6 + 26).

In this way, we see there is precisely one negative real root z = −2 which is also a
(third) twelfth root of 212, which we should have known was there from the beginning.

In summary, we have found three twelfth roots of 212, namely, ±2 and
√
3+ i. We

should recall that, by definition, the polar form of a complex number z = reiθ has
r = |z| ≥ 0, so there is really only one possibility for r, and that is r = 2. Returning
to the search for z = reiθ, we consider

e12iθ = e2πi.

This means, of course, 12θ = 2π+2πk = 2π(1+ k) for some k ∈ Z. If we take k = 0,
we get θ = π/6 which gives z =

√
3 + i. If we take k = 1, we get a new root:

θ =
π

6
(k + 1) =

π

3
and z = 2eiπ/3 = 1 + i

√
3.
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In fact, (1 + i
√
3)3 = 8eiπ = −8, so this is a cube root of −8 and (−8)4 = 212.

We have found four distinct complex twelfth roots of 212, and we can see all the
rest. They correspond to

θ = ℓ
π

6
for ℓ ∈ Z.

The next one is. . . z = 2i. Then you just go around the circle:

2e2π/3 = −1

2
+ i

√
3

2
,

2e5π/6 = −
√
3

2
+
i

2
,

2e−π = −2, (which we already found)

2e7π/6 = −
√
3

2
− i

2
,

2e4π/3 = −1

2
− i

√
3

2
,

2e2π/3 = −2i,

2e5π/3 =
1

2
− i

√
3

2
,

2e11π/6 =

√
3

2
− i

2
.

It may be noted that the last root z = 2e11π/6 corresponds to ℓ = 11 and k = 10 in

z = 2eℓiπ/6 = 2e(k+1)iπ/6.

After this, we can take ℓ = k + 1 = 12, 13, 14, 15, . . ., and the list will just repeat
starting with z = 2. Similarly, taking ℓ = k + 1 = 0 we get z = 2 again, and taking
ℓ = k + 1 = −1,−2,−3, . . . we get the same roots in reverse order. Conclusion: We
have found twelve distinct complex roots of 212 and these are all the complex roots
of 212. They are symmetrically spaced around the circle ∂B2(0) ⊂ C as indicated in
Figure 1.4

Exercise 1.45 Find the six complex sixth roots of −64.

Exercise 1.46 Find the three complex third roots of 8i.
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Figure 1.4: The twelve complex twelfth roots of 4096.

It is more or less clear that the approach to finding roots above will work for any
complex number and any positive integer: Write w = |w|eiθ0 for w ∈ C\{0} where
θ0 = arg(w) and z = reiθ. For any n ∈ N, there is exactly one positive real root
r = n

√

|w| of rn = |w|. Then take

θ =
1

n
(θ0 + 2πk) =

θ0
n

+
2πk

n
for k ∈ Z.

The distinct complex n-th roots of w are thus given by

n
√

|w| ei(θ0+2πk)/n = n
√

|w| eiθ0/n ei2πk/n for k = 0, 1, 2, . . . , n− 1.

Exercise 1.47 Given n ∈ N, the numbers

ζn = ei2πk/n for k = 0, 1, 2, . . . , n− 1

are called the n-th roots of unity. Show the set of complex roots of the polynomial
equation zn − 1 = 0 is precisely

{1, ζ1, ζ2, . . . , ζn−1}.

What is the relation between the n-th roots of unity and the n-th roots of −1, i.e.,
the solutions

{i, ω1, ω2, . . . , ωn−1}
of the polynomial equation zn + 1 = 0?
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1.7 A little topology in C

We have already defined the “open” ball

Br(z0) = {z ∈ C : |z − z0| < r}
determined by a complex number z0 and a positive radius r. Such a set is also some-
times called a neighborhood. Brown and Churchill introduce this notion in their
section 12. More generally, any set N ⊂ C with z0 ∈ N is called a neighborhood
of z0 if there is a ball Br(z0) with

Br(z0) ⊂ N .

Here is an important definition:

Definition 1 A set U ⊂ C is open if for each point z0 ∈ U there is some open ball

Br(z0) with
Br(z0) ⊂ U.

Exercise 1.48 Explain why not every neighborhood of a point z0 ∈ C is open in C.
Explain also why every open set in C is a neighborhood of each of its points. Finally,
show that an open ball Br(z0) in C is open in C.

Interior points an the interior of a set

Given a point z is a set A ⊂ C, we say z is an interior point of A if there is some
open ball Br(z) with Br(z) ⊂ A. Note this condition on points plays the star role
in the definition of an open set: A set is open if each of its points is an interior
point. A general set, however, can have some points that are interior points and
some points that are not interior points. Consider for example A1 = B1(0) ∪ {1} or
A2 = B1(0) ∪ {±1,±i} or A3 = B1(0) ∪ {±1,±i, 2}.

The interior of a set A ⊂ C is the collection of all interior points, and we can
write

int(A) = {z ∈ A : there exists some r > 0 with Br(z) ⊂ A}.
Every subset of C has an interior, but the interior may be empty.

A point z ∈ C is exterior to A, or is an exterior point of A if z is in the interior
of the complement of A. Here is some notation for that:

Ac = {z ∈ C : z /∈ A} and ext(A) = int(Ac).

As the notation suggests: The exterior of a set A ⊂ C is the collection of all points
in C exterior to A.
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Exercise 1.49 Find the interior and exterior of the sets:

(a) A1 = B1(0) ∪ {1},

(b) A2 = B1(0) ∪ {±1,±i}, and

(c) A3 = B1(0) ∪ {±1,±i, 2}.

Show that in general, given any set A ⊂ C, the sets int(A) and ext(A) are open sets.

Boundary points and the closure

In general, not every point in C is either exterior to or interior to a given set A. Some
points satisfy neither condition. But the complement of the interior and exterior is
called the boundary:

C = int(A) ∪ ext(A) ∪ ∂A. (1.31)

This is a very strange way to introduce the topological boundary of a set, and I
apologize (a little bit) for that. Let me give the boundary another (more standard)
introduction.

A point z ∈ C is a boundary point of a set A ⊂ C if every open ball Br(z)
intersects both A and Ac, that is, given r > 0

A ∩ Br(z) 6= φ and Ac ∩Br(z) 6= φ.

The boundary of a set A ⊂ C is the collection of all boundary points and is denoted
by ∂A. Now you can prove (1.31) from which is follows that no matter what set A ⊂ C

you may encounter at least one of the sets int(A), ext(A), or ∂A is nonempty.

Exercise 1.50 What can you say about a set A ⊂ C if

(a) int(A) = φ,

(b) ext(A) = φ, or

(c) ∂A = φ?

Here is another (surprisingly unsymmetric) important definition:

Definition 2 (closed set) A set A ⊂ C is closed if Ac is open.

There are lots of questions to ask (and answer) now. Here are a few to get you started:
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Exercise 1.51 Show int(A) = A\∂A.

Exercise 1.52 Show any union of open sets is open. More precisely, if {Uα}α∈Γ is
a collection of open sets (in C) where Γ is an arbitrary indexing set, i.e., Γ could
be for example N, R or C, then

⋃

α∈Γ

Uα = {z ∈ C : there is some α ∈ Γ with z ∈ Uα} is open.

Exercise 1.53 Show any finite intersection of open sets is open. That is, given
U1, U2, . . . , Un open sets in C, the intersection

n
⋂

j=1

Uj is open.

(Here the indexing set on the union is {1, 2, . . . , n}.)

Exercise 1.54 Show finite unions and arbitrary intersections of closed sets are closed.

Exercise 1.55 Show the following are equivalent conditions on a set A ⊂ C:

(i) A is open.

(ii) A = int(A).

(iii) A ∩ ∂A = φ.

Exercise 1.56 Show a set A ⊂ C is closed if and only if ∂A ⊂ A.

Exercise 1.57 Show some sets are neither open nor closed and some sets are both
open and closed. Show ∂A is always closed.

The closure8 of any set A ⊂ C is given by

A = A ∪ (∂A).

Exercise 1.58 Show a set A ⊂ C is closed if and only if A = A.

8The notation for the closure of a set looks like the notation for the conjugation of a complex
number, but the two have little or nothing to do with each other.
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Punctured neighborhoods and accumulation points

A neighborhood of z ∈ C, and especially an open ball Br(z) is said to be punctured
at z if z is excluded from the neighborhood. This is a little tricky, or more subtle than
it sounds, because a “punctured neighborhood” is (technically) not a neighborhood.

A punctured ball, or what is much more usually referred to as the punctured
disk, with center z ∈ C is

Br(z)\{z}.
A point z ∈ C is said to be an accumulation point of the set A ⊂ C if every
punctured disk Br(z)\{z} intersects A:

A ∩ (Br(z)\{z}) 6= φ.

The set of all accumulation points of a set A is denoted by acc(A).

Exercise 1.59 Find the accumulation points of the sets from Exercise 1.49:

(a) A1 = B1(0) ∪ {1},

(b) A2 = B1(0) ∪ {±1,±i}, and

(c) A3 = B1(0) ∪ {±1,±i, 2}.

Show that in general, the set of accumulation points acc(A) can be open, closed, or
neither.

Exercise 1.60 (Exercises 1.12.8-10 in BC) Show the following:

(a) A ⊂ C is closed if and only if acc(A) ⊂ A.

(b) If A ⊂ C is open then A ⊂ acc(A).

(c) If acc(A) 6= φ, then A must have infinitely many (distinct) points.
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Intermission

So then we have a set of complex numbers C. It has algebraic and analytic struc-
ture which can be compared to familar sets like R and R2. In particular, it is an
algebraically complete field. We have spent a good deal of time addressing some of
the basic properties of C partially because Brown and Churchill have done so. It is,
at some level, time to leave such matters to rest for a while and move on to chapter
2 and a discussion of functions f : U → C where U is an open subset of C and a
discussion of the differentiability of such a function in particular. I offer a kind of
quick review or perspective before we begin.

I may have mentioned that R, aside from being an algebraic field, is analyticaly an
ordered Archimedean field with the least upper bound property. It fact, I
believe it’s a theorem in real analysis somewhere that, up to some kind of isomorphism,
R is the only such set. In comparison, C is not ordered. Archimedean means that for
each element a, there is another b with a < b. Since there is no (natural) order on C,
the Archimedean property is not applicable to C either. Similarly, the property that
each set which is bounded above has a least upper bound can only apply to ordered
sets.

There are words that describe the analytic structure of C. I may have mentioned
that C is a complete Hermitian inner product field. These words are, in some
sense, not so interesting for us because the point of the course is to understand the
field C as a kind of prototypical example of a set with these analytic properties. I
will, however, make a couple comments (below).

I may have also mentioned that the fact that R is an ordered Archimedean field
with the least upper bound property is fundamentally what leads to the subject
of calculus, a.k.a. real analysis, where one studies differentiation and integration of
real valued functions of a real variable. And finally, I may have mentioned the fact that
when one attempts to discuss differentiation and integration for complex functions
of a complex variable, the subject is what is known (at least to the old Europeans—
especially Germans—in the 1700s and 1800s) as analytic function theory and this
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subject has a character involving certain complications—in short it is complex. The
complexity is primarily owing to the structure of the complex product

(a+ bi)(x + iy) = ax− by + (ay + bx)i (the complex product)

and its geometric relation to rotation and scaling mentioned above or more simply
due to the curious relation

i2 = −1.

In this regard, we have decomposed a complex number in a second way (in addition
to decomposition into real and imaginary parts) into the “modulus part” and the
“argument part,” and introduced the notation of Euler:

z = |z|ei arg(z).

I mentioned that the product is a little cumbersome at first which may be construed
to mean it is a little unnatural for (most or many) humans. You should of course
not be discouraged by this. Think of all the time it took (you) to learn to add and
multiply (and subtract and divide) “natural numbers.” You still don’t even know all
the primes. But lots of relatively complicated mathematical manipulations are now
second nature to you. These can all be thought of as somewhat unnatural things for
humans to think about. There was probably a time in the past when most humans
focused more time on useful activities like swimming and staying healthy, hunting
and making fire without matches. I guess the activity of multiplying should also
be included in this list but not in the mathematical sense. Currently however the
fashion is for most humans to spend a lot of time sitting around learning to add and
multiply in the mathematical sense, burning lots of fossil fuels, and doing other equally
meaningful activities like playing computer games and studying complex analysis like
the old Germans.

There is also an inner product on C. It is different from the product:

〈a+bi, x+iy〉 = (a+bi)(x−iy) = ax+by+(bx−ay)i. (the complex inner product)

You know this Hermitian inner product mostly in the form of the associated norm
called the complex absolute value

|a+ bi| =
√

〈a+ bi, a + bi〉 =
√
a2 + b2

and the associated metric distance

d(z, w) = |z − w|
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which makes C a metric space. Incidentally, it has been mentioned that C is alge-
braically complete, but “complete” in the analytic description “complete Hermitian
inner product field,” is something different. This is analytically complete or metri-
cally complete, meaning every Cauchy sequence has a limit in the (metric) space.
This is a property also shared by the ordered Archimedean field with the least upper
bound property (known commonly as R).

If you’re unfamiliar with metric spaces and Cauchy sequences and such things, do
not worry. You learned calculus without knowing important things involving those
concepts about R, and you can learn some analytic function theory without knowing
lots of tedious details about C. Nobody knows everything about N = {1, 2, 3, . . .} or
R or C.



56 CHAPTER 1. COMPLEX NUMBERS



Chapter 2

A Complex Variable

If we’re going to talk about a function f : U → C where U is some (probably open)
subset of C, then we need to be familiar with (and comfortable with) the basics of
functions in general.

Generally given two sets X and Y , a function is a rule or correspondence which
assigns to each x ∈ X a unique y ∈ Y .

Note carefully, the use of the words “to each” and “a unique” in the definition of
a function and make sure you understand their meaning thoroughly. Given a function
f : X → Y and an element x ∈ X , the unique element assigned to x is denoted by
f(x).

Along with the definition1 of function, there are various other definitions it can
be helpful to keep in mind:

Definition 3 Given a function f : X → Y , the set X is called the domain of the
function f and the set Y is (at least sometimes) called the codomain of the function
f . The range of f is the set

{f(x) : x ∈ X}.
The range is also sometimes called the image, or the image of X under f and is
denoted by f(X):

f(X) = {f(x) : x ∈ X}.
1The definition we are using here is usually attributed to Leonhard Euler who had the basic idea

around 1750, though the precise formulation we have used involving arbitrary sets was probably only
first written down by Dedikind around 1880. Up until that time, most people probably thought of
functions as mostly real valued functions of a real variable or even continuous real valued functions
of a real variable. It appears that Lobachevsky and Dirichlet were getting pretty close in the 1830s.
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More generally, the image of any subset A of the domain is

f(A) = {f(x) : x ∈ A}.

The preimage of a set S ⊂ Y is

f−1(S) = {x ∈ X : f(x) ∈ S}.

Note the preimage of a set S ⊂ Y is a subset of the domain X . Note also that the
notation f−1(S) is not intended to mean, and does not mean in general, that there
exists a function g : Y → X for which

g ◦ f(x) = x. (2.1)

Definition 4 A function f : X → Y is one-to-one if for each y ∈ f(X), there
exists a unique x ∈ X such that f(x) = y. This condition on a function is also often
expressed by saying the function is 1-to-1, 1-1, or injective.

Exercise 2.1 Show f : X → Y is injective if and only if

f−1{f(x)} is a singleton for each x ∈ X .

Definition 5 A function f : X → Y is said to be surjective or onto if for each
y ∈ Y , there exists some x ∈ X with f(x) = y.

Definition 6 If a function f : X → Y is both surjective and injective, or in other
words one-to-one and onto, then the function is said to be bijective or a one-to-one
correspondence. It is in this circumstance that there exists a function g : Y → X
for which (2.1) holds.

Incidentally, the notation g ◦ f appearing in (2.1) is a special case of the following:
If f : X → Y and g : Y → Z are functions, then there is a function g ◦ f : X → Z
called the composition of g on f with values

g ◦ f(x) = g(f(x)).

Exercise 2.2 Show f : X → Y is bijective if and only if there exists a function
g : Y → X for which

g ◦ f(x) = x for all x ∈ X and f ◦ g(y) = y for all y ∈ Y . (2.2)
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In this case we write g = f−1 : Y → X , and we can write f−1(y) for elements y ∈ Y
instead of only being able to write f−1(S) for sets S ⊂ Y . That is, in this case, f−1

denotes a function and is not just a notation used to denote the inverse images of
sets. If there is such a function f−1 : Y → X , then f is said to be invertible and
f−1 is called the inverse of f .

The preimage of a set f−1(S) is also sometimes called the inverse image of the set,
though again it should always be remembered that seeing someone freely tossing
around the inverse images of sets (or you doing it yourself) should not be interpreted
to mean there is an inverse function f−1 floating around somewhere.

Definition 7 Given a function f : X → Y and a set A ⊂ X , there is a (different)
function

f∣
∣

A

: A→ Y

with values given by

f∣
∣

A

(x) = f(x) for x ∈ A.

This function is called the restriction of f to the set A.

Hopefully, that is an adequate collection of important words and concepts for
our impending discussion of complex functions of a complex variable f : U → C.
Certainly all these concepts are going to be used/needed/important.

One definition that is good to know in general but which is not so important or
commonly used in complex analysis is the following:

Definition 8 The graph of a function f : X → Y is the set

{(x, f(x)) ∈ X × Y : x ∈ X}.

Incidentally, the set of all ordered pairs (x, y) for which x ∈ X and y ∈ Y is called
the Cartesian product of the sets X and Y . The graph of a function is a subset of
the Cartesian product of the domain and codomain.

Another good thing to know (or realize or keep in mind) in general, though almost
not worth mentioning, is that given any set X there is always a function, called the
identity function id : X → X with values id(x) = x for all x ∈ X . The identity
function is always bijective and is its own inverse.

Exercise 2.3 Use the identity function(s) to simplify the inverse relations (2.2).
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2.1 Some functions f : U → C with U ⊂ C

Many functions come directly from the complex arithmetic considered in Chapter 1
above. For example, we can consider f : C\{0} → C by

f(z) =
1

z
=

z

|z|2 =
x

x2 + y2
− y

x2 + y2
i

where Re(z) = x and Im(z) = y as usual. Notice the domain of this function is
U = C\{0} which is an open subset of C.

The real and imaginary parts of the function value f(z) play an important
part in the discussion of complex valued functions of a complex variable. As perhaps
suggested by the expression for 1/z above, we usually consider u = Re(f) and v =
Im(f) as real valued functions of two real variables like functions considered in
elementary calculus (III). In the case of the reciprocal function, u : γ−1(U) → R by

u(x, y) =
x

x2 + y2
.

Similarly, v : γ−1(U) → R by

v(x, y) = − y

x2 + y2
.

Remember γ : R2 → C the isomorphism giving γ−1(C\{0}) = R2\{(0, 0)}.
Exercise 2.4 Draw the graphs of u = Re(f) and v = Im(f) when f(z) = 1/z.

Incidentally, we could think of the real and imaginary parts of a function f : U → C

where U ⊂ C as real valued functions of a complex variable. If we did that, the values
of Re(1/z) would look something like

Re(z)

|z|2 .

The reciprocal function is perhaps a complicated function to start with. Shall we
consider something a bit easier? Take for example, the identity function

id : C → C by id(z) = z.

You might not think there is much to say about this complex function, and maybe
you are sort of right. Let me try to say something anyway. First of all, the graph of
the identity function, which happens to be the diagonal

{(z, z) ∈ C
2 : z ∈ C}
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in C2 is already difficult to “see” (or draw).2

Exercise 2.5 What can you say about

{(γ−1(z), γ−1(z)) = (x, y, x, y) ∈ R
4 : z = x+ iy ∈ C}

as a subset of R4?

Still, there is a pretty nice geometric picture associated with (this and many other)
complex functions. Roughly, we can think of the domain C of id as “taken” by the
identity function and “laid down” on a second copy, a codomain copy, of C. What
I am trying to express is quite easy—it’s so easy for the identity function, you might
have difficulty seeing it. If so, do not worry. You can come back to what I’ve just
said in a moment, and it should make perfect sense. Just remember that what we are
talking about here is what is called (by some people at least) a mapping picture,
and using a mapping picture is an alternative way to visualize the “workings” of a
function, especially a complex valued function—an alternative to trying to draw (or
imagine) the graph of the function.

To add additional foreshadowing, I might mention that id(z) = z has a complex
derivative and you might not be surprised to be informed that that derivative is the
constant function 1 : C → C by 1(z) ≡ 1. Can you give the mapping picture for
1? What I would guess you would not know is the definition, meaning, or how to
compute a complex derivative. Those are among the main subjects of this chapter,
so for now you can look forward to (soon) really understanding what it means that

id′(z) ≡ 1.

A good place to really start with mapping pictures is with the complex square
function (with) f(z) = z2. On the one hand,

z2 = (x+ iy)2 = x2 − y2 + 2xyi,

So the real and imaginary parts of f are given by the familiar functions3

u(x, y) = x2 − y2 and v(x, y) = 2xy.

2I may have mentioned that the subject of several complex variables is a notoriously difficult
subject. You can start to see that even here.

3The names u and v for the real and imaginary parts of a complex valued function of a complex
variable z = x+ iy are almost as standard as naming a function f or the designations/conventions
x = Re(z) and y = Im(z).
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On the other hand, squaring is a kind of multiplication, and we know multiplication
has its primary geometric interpretation through scaling and rotation:

z2 = |z|2e2iθ where θ = arg(z).

Notice the rotation in this case corresponds to doubling the argument. In particular,
for z ∈ S1 (the unit circle) where |z| = 1, the doubling of the angle essentially tells
the whole story. For example, we can say the semicircle S+ = {eiθ ∈ C : 0 ≤ θ < π}
is mapped bijectively and monotonically onto the entire unit circle. In more colorful
language, the semicircle S

+ is stretched around the entire unit circle starting from
12 = 1 with a uniform doubling of length so as to cover all of S1. See Figure 2.1.

Figure 2.1: A mapping picture for f(z) = z2. Here we show the images of certain
arcs of circles in C. In particular, the image S1 of the semicircle S+1, known as the
upper unit semicircle in C, is shown on the right. The width of the image circle
in this graphic is half of that used to plot S+ on the left (to indicate the stretching of
length by a factor of 2 along the circle. Can you determine which blue point in the
domain goes to which blue point in the image? .

The images of certain other points and sets are indicated in Figure 2.1. Let’s take
a look at those. First make sure you understand what is happening with the upper
unit semicircle S

+. If we were to extend the mapping to eiθ with θ = π, then we
would get image (eiπ)2 = 1 which would overlap the image of S+ and then we would
start to cover the circle in the image a second time. This suggests consideration of a
kind of second copy of C to keep track of what’s happening in the codomain. I have
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Figure 2.2: The codomain for f : C → C by f(z) = z2 is nominally C, but it makes
for better bookkeeping if we separate the codomain into two “sheets.” These two
sheets, separated and properly glued together along a “branch cut” are the domain
for the complex square root function. .

drawn a mapping picture using this idea in Figure 2.2. The green points along the
lower unit semicircle get stretched, starting with eiπ = −1 7→ e2πi = 1, around the
entire unit circle S1 a second time. In order to keep track of these images, we have
introduced a second “sheet” of C in the codomain. The restriction

f∣
∣

S1

: S1 → S
1

does not have an inverse because, though this restriction is surjective onto the unit
circle, the function is not one-to-one. The classical way to describe this situation, is
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to say that the square root function (the nominal inverse of f(z) = z2) is a multiple
valued (or in this case bivalent) function. For example, the values of the complex
square root g : C → C by g(z) =

√
z include g(1) = 1 and g(1) = −1. A more

sophisticated approach to this situation is to actually make a new codomain called
R2 consisting of both sheets, i.e., two copies of C, indicated in Figure 2.2. For (almost)
every point in the complex plane C there correspond two points in R2. For example,
there is a point w0 = 1 = e0i in the first, or principal, sheet of R2, and for this point√
w0 = 1. But there is a second point w1 = 1 = e2πi in the second sheet of R2, and

for this point
√
w1 = −1.

The exceptional point is w = 0. There is only one point in R2 at w = 0, and this
is called the branch point. Notice there is also only one, nicely defined, square root
at the branch point:

√
0 = 0 ∈ C.

The domain/codomain R2 has a name, both as a general kind of thing and as a
specific example of that kind of thing. The general kind of thing is called a Riemann
surface, and R2 is the Riemann surface of f(z) = z2. If you understand R2 correctly,
then you should realize it is a kind of mind-blowing object. If you do not understand
R2 much at all, then we should work a little harder—you can do it (fighting!).

Let us denote the two sheets of R2 by Σ0 and Σ1. Technically, we can write

Σ0 = {(z, 0) : z ∈ C\{0}}.

Notice that Σ0, if we ignore the second indexing coordinate, looks just like the punc-
tured complex plane C\{0}. It may also be helpful to think about Σ0 as the complex
plane with (complex) numbers w having argument satisfying 0 ≤ arg(w) < 2π. The
same is true of

Σ1 = {(z, 1) : z ∈ C\{0}},
but for Σ1 we can think of points w ∈ Σ1 with 2π ≤ arg(w) < 4π. Then R2 =
Σ1 ∪Σ2 ∪ {0}. This description, so far, does not capture the most important feature
of R2, which is how the two sheets are “glued” or “sewn” or joined together. They
are joined together along a branch cut, which I sort of think should be called “two”
branch cuts, but apparently no one agrees with me on this. Nevertheless, if we isolate
the positive real axis in Σ0 and the positive real axis in Σ1, and we imagine cutting
each plane along its positive real half line, then we have four “cut edges.”

Pay close attention now: When “you” wander. . . or more properly if a point w
wanders out of the first quadrant in Σ0, if that point crosses the positive imaginary
axis, it stays in Σ0 just as you might expect. However, if the point w wanders out
of the first quadrant in Σ0 across the positive real axis, then you find yourself, or w
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finds itself, in the fourth quadrant of Σ1. This is illustrated in Figure 2.3, and this
happens because the first quadrant of Σ0 is “sewn together” with the fourth quadrant
of Σ1 along the positive real axis. Similarly, the fourth quadrant of Σ0 is sewn to

Figure 2.3: A point wandering around in the Riemann surface R2 for z
2. The branch

cut is along the positive real axis. What happens if you exit the third quadrant of Σ1

along the positive real axis? .

the first quadrant of Σ1 along the positive real axis/axes. This is what I would call
the “second branch cut,” but traditionally, the entire construction is said to involve
simply a branch cut along the positive real axis.

You should be able to picture now the principal square root of a complex number
w ∈ C\{0} as the image under the square root of w ∈ Σ0. Of course, this is the
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principal square root with argument satisfying

0 ≤ Arg(
√
w) < π.

The corresponding mapping g : C = Σ0 → C by g(w) =
√
w is called the principal

square root (according to me). The map g : R2 → C is the complex square root.

Exercise 2.6 Consider f : C → R2 by f(z) = z2.

(a) Draw the radial lines

Ln = {t[cos(nπ/10) + i sin(nπ/10)] : t ≥ 0}

in red in C for n = 1, 2, . . . , 10.

(b) Draw the images f(Ln) (in red) for n = 1, 2, . . . , 10 in the Riemann surface R2.

(c) Draw the radial lines Ln in blue in C for n = 11, 12, . . . , 20.

(d) Draw the images f(Ln) (in blue) for n = 11, 12, . . . , 20 in the Riemann surface
R2.

Exercise 2.7 Brown and Churchill designate the principal n-th root of w = |w|eiφ ∈
C\{0} to be the complex number

n
√

|w|eiφ/n

when Arg(w) = φ is taken with −π < φ ≤ π. Construct a different Riemann surface
for f(z) = z2 so that the principal square root of Brown and Churchill is obtained as
the inverse of f on a single sheet of the Riemann surface. Hint: Put the branch cut
along the negative real axis.

We will come back to the complex squaring function, square root function, and the
associated Riemann surface.

A more general class of “nice” complex valued functions of a complex variable are
given by the polynomials. These look like the polynomials from, say, precalculus
but they have complex coefficients in general, and we (may) want to think of them
as mappings of the complex plane to itself (or into some Riemann surface):

P : C → C by P (z) =
k
∑

j=0

ajz
j .
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Just like polynomials with real (or rational or integer) coefficients, the degree of such
a polynomial is k if the coefficient of the highest power term, ak, is nonzero. Notice
f(z) = z2 is a polynomial mapping.

Exercise 2.8 What is the image of the open sector

{reiθ : 0 < r and 0 < θ < π/6}

under the polynomial map f(z) = z3?

An even more general class of “nice” complex valued functions of a complex
variable is given by the rational functions. Each such function has the form q :
C\{z1, z2, . . . , zk} → C where

q(z) =
P (z)

Q(z)
with P,Q polynomials

and {z1, z2, . . . , zk} is the collection of roots of Q, i.e., {z ∈ C : Q(z) = 0} =
{z1, z2, . . . , zk}. The function f(z) = 1/z we introduced at the beginning of this
discussion is one of these rational functions.

2.2 Complex limits and derivatives

These are my notes on (most of) sections 2.15-19 in BC.
I want to start with complex differentiation. Say f : U → C has domain an open

subset U of the complex plane. Say also that z ∈ U . Then the derivative of f at z
is given by

f ′(z) = lim
ζ→z

f(ζ)− f(z)

ζ − z

if this limit exists. A complex derivative of a function f , when it exists, can also
be denoted by

df

dz
.

Naturally, one might want to know what it means for a limit to exist. In this case,
it means precisely the following: There is some fixed complex number L = f ′(z) such
that given ǫ > 0, there exists some δ > 0 for which

0 < |ζ − z| < δ =⇒
∣

∣

∣

∣

f(ζ)− f(z)

ζ − z
− L

∣

∣

∣

∣

< ǫ.
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More generally, if z0 ∈ U and g : U\{z0} → C, then we write

lim
z→z0

g(z) = w0 (2.3)

if for any ǫ > 0, there is some δ > 0 for which

0 < |z − z0| < δ =⇒ |g(z)− w0| < ǫ.

There can only be one complex number w0 for which the limiting assertion (2.3) holds.
Note that if

lim
z→z0

g(z) = w̃0,

then given any ǫ > 0, we can find some δ > 0 so that both

|g(z)− w0| <
ǫ

2
and |g(z)− w̃0| <

ǫ

2

when 0 < |z − z0| < δ. This means

|w̃0 − w0| < ǫ. (2.4)

Exercise 2.9 Obtain (2.4) carfully and in detail using the definition of what it means
for a limit to exist and the triangle inequality.

Since limits are unique, if a function f : U → C is differentiable at each point z in an
open set U ⊂ C, the value of the derivative defines a new function f ′ : U → C.

As usual, there are general results about limits:

lim
z→z0

[g(z) + h(z)] = lim
z→z0

g(z) + lim
z→z0

h(z).

lim
z→z0

[g(z)h(z)] =

(

lim
z→z0

g(z)

)(

lim
z→z0

h(z)

)

.

lim
z→z0

g(z)

h(z)
=

limz→z0 g(z)

limz→z0 h(z)
.

These should all be interpreted to mean that of the limits

lim
z→z0

g(z) and lim
z→z0

h(z) (2.5)

exist, then the limit of the algebraic expression on the left will exist and be given by
the algebraic expression of the limits on the right. And of course

lim
z→z0

h(z)

should not be zero for the last one.



2.2. COMPLEX LIMITS AND DERIVATIVES 69

Exercise 2.10 Find examples of two functions g : C → C and h : C → C and some
z0 ∈ C for which the limits in (2.5) both exist and limz→z0 h(z) = 0 and the following
hold:

(a) limz→z0 g(z)/h(z) exists

(b) limz→z0 g(z)/h(z) does not exist.

Here is something a little (tiny bit) different: A function f : U\{z} → C with U
open in C and z ∈ U (as usual) satisfies

lim
ζ→z

f(ζ) = w ∈ C

if and only if

lim
ζ→z

Re f(ζ) = Rew and lim
ζ→z

Im f(ζ) = Imw. (2.6)

The “if” part is just a consequence of the “sum of the limits” formula above. The
“only if” part is the tiny bit different part. It is quite easy.

Exercise 2.11 Show that if z = x+ iy and

lim
ζ→z

f(ζ) = w,

then

lim
(ξ,η)→(x,y)

Re(f)(ξ, η) = Rew and lim
(ξ,η)→(x,y)

Im(f)(ξ, η) = Imw.

We mentioned that C is a metric space, and the definitions/theory of limits of func-
tions on a punctured open set in one metric space taking values in another metric
are essentially the same as what we have described above. Similarly, the idea of a
continuous function from one metric space to another can always be expressed in
terms of limits. The simplest formulation is the following:

Definition 9 (continuity) Given and open set U ⊂ C with z0 ∈ U and a function
g : U → C, we say g is continuous at z0 if

lim
z→z0

g(z) = g(z0).

The function g : U → bbc is continuous, or is in C0(U), if g is continuous at every
z0 ∈ U .
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Exercise 2.12 (Exercises2.18.1-4 and 7) Show the following functions are continuous
on all of C:

(a) (imaginary part) Im : C → C.

(b) (conjugation) g : C → C by g(z) = z.

(c) (complex square) f : C → C by f(z) = z2.

There is more about limits and continuity and stereographic projection and the
point at ∞ (all good stuff) in BC, but I want to get (back to) differentiation. If, for
example, f : C → C by f(z) = z2 is the complex square function, then

f(ζ)− f(z)

ζ − z
= ζ + z,

and so

lim
ζ→z

f(ζ)− f(z)

ζ − z
= 2z

which looks totally “normal.” This sort of “normal” thing happens for many complex
functions including complex polynomials, products, quotients, and other functions.
Expected “normal” differentiation happens for complex valued functions of a complex
variable. But you should not imagine that complex differentiation is some kind of
trivial generalization of regular differentiation from calculus I.

Let me see if I can illustrate this. Let g : C → C be complex conjugation given by
g(z) = z. If we were to take the corresponding function under the canonical bijection
γ : R2 → C, we would get G : R2 → R2 given by

G(x, y) = (x,−y).

This is a linear transformation of the plane, namely reflection about the x-axis. It
has two component functions u(x, y) = x and v(x, y) = −y. These have any partial
derivatives you might wish to compute, and the overall transformation is differentiable
in any way you might imagine. And yet. . .

lim
R∋h→0

g(z + h)− g(z)

h
= 1

but

lim
R∋h→0

g(z + ih)− g(z)

ih
= −1.
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This means that for every z ∈ C

lim
ζ→z

g(ζ)− g(z)

ζ − z
does not exist.

The conjugation function g : C → C by g(z) = z is not (complex) differentiable at
any single point z ∈ C.

Exercise 2.13 Show that if f : U → C is complex differentiable, then u = Re f and
v = Im f have first partial derivatives at every point in γ−1(U) ⊂ R2.

For example, we can take ζ = z + h and z = x+ iy where h ∈ R. Then

f(z + h)− f(z)

h
=
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h
.

By differentiability,

∂u

∂x
= lim

h→0

u(x+ h, y)− u(x, y)

h
= Re f ′(z)

and
∂v

∂x
= lim

h→0

v(x+ h, y)− v(x, y)

h
= Im f ′(z).

Of course, the existence of both partial derivatives for a real valued function of two
real variables does not mean the function is continuous. You learned this in calcu-
lus III. . . or maybe you didn’t.

Exercise 2.14 Give an example of a function u : R2 → R for which both first partial
derivatives exist at every point (x, y) ∈ R2, but u is not continuous at (at least) one
point in R

2.

But if f is differentiable at z, then f is continuous at z. Here is a proof:
Let ǫ > 0. Then for 0 < |z − z0| we can write

|f(z)− f(z0)| =
∣

∣

∣

∣

f(z)− f(z0)

z − z0

∣

∣

∣

∣

|z − z0|

=

∣

∣

∣

∣

f(z)− f(z0)

z − z0
− f ′(z0) + f ′(z0)

∣

∣

∣

∣

|z − z0|

≤
(∣

∣

∣

∣

f(z)− f(z0)

z − z0
− f ′(z0)

∣

∣

∣

∣

+ |f ′(z0)|
)

|z − z0|.
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By differentiability, we can take/find δ > 0 so that

0 < |z − z0| < δ =⇒



































∣

∣

∣

∣

f(z)− f(z0)

z − z0
− f ′(z0)

∣

∣

∣

∣

<
ǫ

2
,

|z − z0| < 1, and

|z − z0| <
ǫ

2(|f ′(z0)|+ 1)
.

Thus, if 0 < |z − z0| < δ, then

|f(z)− f(z0)| <
ǫ

2
+
ǫ

2
= ǫ,

and this is what it means for f to be continuous at z0. �

We have now covered some basic facts about differentiability and continuity. I
guess I’m content to consider stereographic projection and limits at infinity.

Stereographic projection and limits at infinity

Consider the two sets

C∞ = C ∪ {∞} and S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

These sets are called the extended complex plane and the two-sphere respec-
tively. Much like there is a vector space isomorphism γ : R2 → C translating al-
gebraic vector space properties, there is a one-to-one correspondence σ : S2 → C∞

called stereographic projection translating analytic (and topological) properties.
For the moment, we will focus primarly on two aspects of this correspondence:

1. We can map certain open sets in R2 to open sets in C∞ to get “open neighbor-
hoods of ∞.” (This is topology.)

2. Using these open sets, we can define for g : U → C∞ where U is open in C

limits of the form
lim
z→ζ

g(z) = ω

where ζ, ω ∈ C∞. (This may be considered also topological, but we will use it
in definitively analytic contexts.)
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The idea is very easy: A nieghborhood of ∞ in C is an open set U in C such that
for some R > 0,

C\BR(0) ⊂ U.

Such a set U is then also a punctued neighborhood of ∞ in C∞, and a set of the
form U ∪ {∞} is a full neighborhood of ∞ in C∞.

Exercise 2.15 Draw pictures of these three kinds of neighborhoods.

As mathematicians we have to make this more complicated by explaining it with
formulas and functions to make it more precise and “easier.”

They key player, stereographic projection, as mentioned above, is the function
σ : S2 → C ∪ {∞} given by

σ(x, y, z) =











∞, if z = 1

x

1− z
+ i

y

1− z
, if z < 1.

Both S
2 and C∞ = C ∪ {∞} are called the Riemann sphere in this context. Here

are some things you can do with them:

1. There is a natural topology (of open sets) on S2 obtained by intersecting open
sets in R3 with S2.

2. In S2 the north pole N = (0, 0, 1) looks pretty much like any other point. (You
can notice this.)

3. Given a real or complex valued function G : S2 → F where F denotes one of
the fields R or C, it is quite easy to talk about/understand the continuity of G
at a point (x0, y0, z0) ∈ S2: For any ǫ > 0, there is some δ > 0 such that

‖(x, y, z)− (x0, y0, z0)‖ < δ
(x, y, z) ∈ S2

}

=⇒ |G(x, y, z)−G(x0, y0, z0)| < ǫ,

That is,
lim

S2∋(x,y,z)→(x0,z0,z0)
G(x, y, z) = G(x0, y0, z0).

Here we can use (and have used) the Euclidean norm on R3

‖(x, y, z)‖ =
√

x2 + y2 + z2

restricted to S3.
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4. Stereographic projection also gives a correspondence between functions on C ∪
{∞} and S2:

G(x) = g ◦ σ(x)
g(z) = G ◦ σ−1(z),

or between functions g : C → C and functions G = g ◦ σ : S2\{N} → C, or
between functions g : U → C and functions G = g ◦ σ : σ−1(U)\{N} → C.

In the last case, σ−1(U)\{N} may be a “nice” punctured neighborhood of N ∈
S2. So

lim
S2∋x→N

G(x)

may make perfectly good (topological/analytic) sense.

5. Making

{σ−1(V ) : V is open in S
2}

a topology on C ∪ {∞} makes good sense.

6. Defining

lim
z→∞

g(z)

in terms of

lim
x→N

G(x)

also makes good sense.

Aside from all these observations, there is sort of one more important thing to note:
When you want to do analysis on a function f : U → C defined on a puctured
neighborhood U of ∞ in C or a neighborhood of ∞ in C ∪ {∞} and ask questions
like

1. Is f continuous at ∞?

2. Is f differentiable at ∞?

You should consider the function g : V → C given by

g(ζ) = f

(

1

ζ

)
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where

V =

{

1

z
: z ∈ U\{∞}

}

.

Note that V is a punctured neighborhood of 0 ∈ C. If

f(∞) = lim
z→∞

f(z),

then one can also consider

g(ζ) =















f

(

1

ζ

)

, ζ ∈ V \{0}

f(∞), ζ = 0.

We say, for example, that f is differentiable at z = ∞ if g is differentiable at ζ = 0.

2.3 Differentiability (continued)

Let’s return to differentiability at finite points, i.e., given an open set U ⊂ C and a
function f : U → C we are interested in the situation where f is (complex) differen-
tiable at a point z0 ∈ U and especially when f is complex differentiable at all points
z0 ∈ U . Basically, one can say the familar differentiation rules from calculus hold:

Linearity

If f, g : U → C are differentiable and α, β ∈ C, then af + bg is differentiable with

d

dz
[αf + βg] = αf ′ + βg′.

Power Rule(s)

d

dz
zn = nzn−1 on all of C for n = 1, 2, 3, . . ..

If f is constant, e.g., f(z) = z0, then f ′ ≡ 0. The functions f : C\{0} → C by
f(z) = 1/z2 are differentible on the punctured plane C\{0} with

d

dz

1

zn
= − n

zn+1
for n = 1, 2, 3, . . ..
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Putting the power rules (for positive exponents) together with linearity gives the
derivatives of polynomials, which behave as one would expect (at least concerning
the formulas) from calculus.

Exercise 2.16 (Legendre polynomials) The real Legendre polynomials can be de-
fined as follows P0(x) ≡ 1, and for each n = 1, 2, 3, . . ., Pn is the degree n polynomial
for which the following hold

(i) Pn(1) = 1.

(ii)
∫ 1

−1

Pn(x)Pj(x) dx = 0 for 0 ≤ j < n.

Plot the first few (real) Legendre polynomials on the interval [−1, 1], and show they
are given by

Pn(x) =
1

n!2n
dn

dxn
(x2 − 1)n for n = 1, 2, 3, . . ..

The complex Legendre polynomials Pn = Pn(z) have (and satisfy) the same formulas
as polynomial functions on the complex plane.

Product rule

If f, g : U → C are differentiable, then fg : U → C is differentiable with

(fg)′ = f ′g + fg′.

Quotient rule

If f, g : U → C are differentiable and g 6= 0, then f/g is differentiable and

(

f

g

)′

=
f ′g − fg′

g2
.

Chain rule

If U and V are open subsets of C with f : U → C and g : V → C differentiable
functions for which g(V ) ⊂ U , then the compostion g ◦ f : U → C given by

g ◦ f(z) = g(f(z))
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is differentiable and
d

dz
(g ◦ f) = (g′ ◦ f)df

dz
.

Again, I want to emphasize that the fact that all these “calculus” rules for differ-
entiation apply to complex differentiable functions does not at all mean the complex
differentiable functions are directly comparable to differentiable functions f : R → bbr
on the real field. Though the rules still work, there are, in a certain sense, far fewer
complex differentiable functions either than differentiable functions f : R → R or
differentiable functions f : R2 → R

2. There are just fewer complex differentiable
functions to start with. Some idea of which functions have “gone missing” may be
appreciated by considering f(x) = x2 = |x|2 and f(z) = |z|2.

We will now start to explore how special complex differentiable functions really
are using the Cauchy-Riemann equations.

2.4 The Cauchy-Riemann Equations

If f : U → C is complex differentiable on an open set U ⊂ C, then

f ′(z) = lim
ζ→z

f(ζ)− f(z)

ζ − z
. (2.7)

Taking the limit using values ζ = z + h with h ∈ R, we find

f ′(z) = lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y). (2.8)

Thus, we have an interesting formula for the derivative of f = u+ iv in terms of the
real partial derivatives of the real and imaginary parts u and v:

f ′ = ux + ivx.

Similarly, taking the limit giving the derivative f ′(x) using valued ζ = z + ih, we
obtain a second formula:

f ′ = vy − iuy.

Exercise 2.17 (Cauchy-Riemann equations) Carry out the details of taking the limit
(2.7) using values ζ = z + ih with R ∋ h→ 0.
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Equating the two expressions for f ′ we obtain the Cauchy-Riemann equations:



















∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

(2.9)

This is a system of two (real) partial differential equations.
There is a kind of converse:

Theorem 3 Let u, v : U → R where U is an open subset of R2 and assume u and v
have continuous first order partial derivatives4

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
: U → R

satifying the Cauchy-Riemann equations on U . Then the complex function f : U → C

defined by f(z) = u(x, y) + iv(x, y) where z = x+ iy and U = γ(U) are given by the
canonical identifications is complex differentiable.

Before I prove Theorem 3, let me mention that the following may be a good
question to ask:

Back in (2.8) how do we know the partial derivatives of the functions
u = Re(f) and v = Im(f) exist?

The assertion that

lim
h→0

u(x+ h, y)− u(x, y)

h
and lim

h→0

v(x+ h, y)− v(x, y)

h

exist may be justified as follows: Let ǫ > 0. Then there is some δ > 0 for which
∣

∣

∣

∣

f(z + h)− f(z)

h
− f ′(z)

∣

∣

∣

∣

< ǫ for 0 < |h| < δ.

4As a matter of (standard) notation, the collection of all functions with domain an open set
U ⊂ R

2 having continuous first partial derivatives is denoted by C1(U). Thus, the statement of
Theorem 3 may be shortened by writing simply u, v ∈ C1(U). You may also be interested to know
how to pronounce/say “C1(U).” When you say it, it should sound like this: “sea one of you” or
perhaps “see one of you.” The collection of continuous functions of two variables on the same set U
is denoted by C0(U). Can you guess how to express this notation verbally? Answer: “see zero of
you.” It is true that C1(U) ⊂ C0(U). Can you prove it?
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This is what it means for f to be complex differentiable. As written above, this also
gives
∣

∣

∣

∣

u(x+ h, y)− u(x, y)

h
− Re[f ′(z)] + i

(

v(x+ h, y)− v(x, y)

h
− Im[f ′(z)]

)∣

∣

∣

∣

< ǫ

when 0 < |h| < δ. Therefore, when 0 < |h| < δ we know for example
∣

∣

∣

∣

u(x+ h, y)− u(x, y)

h
− Re[f ′(z)]

∣

∣

∣

∣

≤
∣

∣

∣

∣

u(x+ h, y)− u(x, y)

h
− Re[f ′(z)]

+i

(

v(x+ h, y)− v(x, y)

h
− Im[f ′(z)]

)∣

∣

∣

∣

< ǫ.

Note: We are not using the triangle inequality here but rather the inequality |Re(z)| ≤
|z| for every complex number z, which is a different thing.5

In any case, this means

∂u

∂x
= lim

h→0

u(x+ h, y)− u(x, y)

h
exists,

and in fact as we see this partial derivative has the value Re[f ′(z)]. The other partial
derivative of u = Re(f) and both first partials of v = Im(f) may be seen to exist
similarly.

Proof of Theorem 3: It is enough to show

lim
ζ→z

f(ζ)− f(z)

ζ − z
= ux(x, y) + ivx(x, y)

where as usual z = x+ iy. Letting ζ − z = h+ ik we can write
∣

∣

∣

∣

f(ζ)− f(z)

ζ − z
− [ux(x, y) + ivx(x, y)]

∣

∣

∣

∣

=

∣

∣

∣

∣

u(x+ h, y + k)− u(x, y)

h+ ik
− ux(x, y)

+i

(

v(x+ h, y + k)− v(x, y)

h+ ik
− vx(x, y)

)∣

∣

∣

∣

. (2.10)

5In particular, this inequality follows from the definition of the absolute value/modulus of a
complex number; see (1) and (3) on page 9, Chapter 1, Section 4 of BC.
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Admittedly, the expressions on the right are not exactly what we’d like to see, but
we are, in some sense, stuck with them. Do you know what we/I would like to see?
I’d like to see differences like

u(x+ h, y)− u(x, y)

h
− ux(x, y) and

v(x+ h, y)− v(x, y)

h
− vx(x, y).

I know I can make these small by making h small. In view of the Cauchy-Riemann
equations, expressions approximating uy(x, y) and vy(x, y), i.e., differences like

u(x, y + k)− u(x, y)

k
− uy(x, y) and

v(x, y + k)− v(x, y)

k
− vy(x, y)

would also be nice to see. The good news is that expressions looking vaguely like
these are present, so maybe there is some hope. Let’s see what we can come up with
(complex) algebraically.

Okay. I’ve worked out what to do on scratch paper, and if I’m going to present
it here, it strikes me that I want to draw your attention to three components of my
approach:

1. I’m going to try to be somewhat (notationally) organized. This is partially be-
cause I’m typing this up, and the format does not lend itself to long expressions
that fill up a tabloid (11” x 17”) piece of paper.

2. I’m going to make an observation or two. In a certain sense, these may be
viewed as technicalities in the background, but they are important.

3. I’m going to need a couple standard “tricks” or techniques from analysis, in-
cluding a certain application of the familiar mean value theorem from calculus.

With these components in mind, let’s give it go. Let

w =
f(ζ)− f(z)

ζ − z

denote the complex difference quotent above which we have expressed as

w =
u(x+ h, y + k)− u(x, y)

h + ik
+ i

v(x+ h, y + k)− v(x, y)

h+ ik
.

Perhaps we can take, as a first step, finding the real and imaginary parts of the
difference quotient w. As a second expression of notational organization, lets set

A0 = u(x+ h, y + k)− u(x, y) and B0 = v(x+ h, y + k)− v(x, y)
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and note that these are real numbers. Thus,

w =
1

h2 + k2
[hA0 + kB0 + (hB0 − kA0)i] (2.11)

where we are assuming h2+k2 > 0, but we are allowed, at least eventually, to assume
0 < h2 + k2 < δ for some δ > 0 we get to choose. We’ll come back to this point after
the algebraic manipulations are over.

Here is a first trick/technique: When I see an expression like A0, I’m going to
write

A0 = u(x+ h, y + k)− u(x, y + k) + u(x, y + k)− u(x, y) = A1 + A2 (2.12)

where
A1 = u(x+ h, y + k)− u(x, y + k) (2.13)

and
A2 = u(x, y + k)− u(x, y). (2.14)

The advantage of these differences is that only one component is changing (in each
one). Let’s focus first, for example, on the quantity A1. I couple this (focus) with an
important observation: Because U is an open subset of R2, I know I can take h2 + k2

small enough, say
|ζ − z| =

√
h2 + k2 < δ0,

so that all the points

x+ t + i(y + k) for |t| ≤ |h| (2.15)

lie in U or correspondingly

(x+ t, y + k) ∈ U for |t| ≤ |h|. (2.16)

Exercise 2.18 Draw pictures illustrating (2.15) and (2.16).

Now, let me assume for a moment that |h| > 0. Then g : [−|h|, |h|] → R by

g(t) = u(x+ t, y + k)

for k (and h 6= 0) fixed is a real valued function (well) defined and continuous on
the interval [−|h|, |h|] and continuously differentiable (at least) on the open interval
(−|h|, |h|). In the usual notation of analysis:

g ∈ C0[−|h|, |h|] ∩ C1(−|h|, |h|).
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These, you may remember, are adequate conditions on g to apply the mean value
theorem to conclude

g(h)− g(0)

h
= g′(t∗) for some t∗ ∈ (−|h|, |h|).

Multiplying through by h and expressing the value(s) of g and its derivative in terms
of the function u, we have a point x∗ = x+ t∗ between x and x+ h for which

A1 = g(h)− g(0) = hg′(t∗) = h
∂u

∂x
(x∗, y + k). (2.17)

Notice finally that even when h = 0 the equality (2.17) still holds. Therefore, we can
substitute in general to find

A0 = A1 + A2 = h
∂u

∂x
(x∗, y + k) + A2

and

hA0 = h2
∂u

∂x
(x∗, y + k) + hA2 and kA0 = hk

∂u

∂x
(x∗, y + k) + kA2.

These expressions are not in a fully useful form quite yet, but notice the appearance
of these quantities in the expression (2.11) for the difference quotient w indicates
pretty clearly where we are going.

Exercise 2.19 Use the mean value theorem applied to an approriate function of one
real variable to conclude

A2 = k
∂u

∂y
(x, y∗)

for some y∗ between y and y + k so that

hA0 = h2
∂u

∂x
(x∗, y + k) + hk

∂u

∂y
(x, y∗)

and

kA0 = hk
∂u

∂x
(x∗, y + k) + k2

∂u

∂y
(x, y∗).

Using the same approach, we can find other values ξ∗ between x and x + h and η∗
between y and y + k so that

B0 = h
∂v

∂x
(ξ∗, y + k) + k

∂v

∂y
(x, η∗).
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It follows that

Re(w) =
1

h2 + k2
[hA0 + kB0]

=
1

h2 + k2

[

h2
∂u

∂x
(x∗, y + k) + hk

(

∂u

∂y
(x, y∗) +

∂v

∂x
(ξ∗, y + k)

)

+ k2
∂v

∂y
(x, η∗)

]

and

Im(w) =
1

h2 + k2
[hB0 − kA0]

=
1

h2 + k2

[

h2
∂v

∂x
(ξ∗, y + k) + hk

(

∂v

∂y
(x, η∗)−

∂u

∂x
(x∗, y + k)

)

− k2
∂u

∂y
(x, y∗)

]

.

Let us apply to these expressions the Cauchy-Riemann equations, replacing the partial
derivatives with respect to y with partial derivatives with respect to x only:

Re(w) =
1

h2 + k2

[

h2
∂u

∂x
(x∗, y + k) + hk

(

∂v

∂x
(ξ∗, y + k)− ∂v

∂x
(x, y∗)

)

+ k2
∂u

∂x
(x, η∗)

]

and

Im(w) =
1

h2 + k2

[

h2
∂v

∂x
(ξ∗, y + k) + hk

(

∂u

∂x
(x, η∗)−

∂u

∂x
(x∗, y + k)

)

+ k2
∂v

∂x
(x, y∗)

]

.

Returning to the beginning of our proof and the expression (2.10) for |w− (ux+ ivx)|
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in particular, we have shown

|Re(w)− ux| =
∣

∣

∣

∣

1

h2 + k2

[

h2
∂u

∂x
(x∗, y + k)

+ hk

(

∂v

∂x
(ξ∗, y + k)− ∂v

∂x
(x, y∗)

)

+k2
∂u

∂x
(x, η∗)

]

− ∂u

∂x
(x, y)

∣

∣

∣

∣

=
1

h2 + k2

∣

∣

∣

∣

h2
(

∂u

∂x
(x∗, y + k)− ∂u

∂x
(x, y)

)

+ hk

(

∂v

∂x
(ξ∗, y + k)− ∂v

∂x
(x, y∗)

)

+k2
(

∂u

∂x
(x, η∗)−

∂u

∂x
(x, y)

)∣

∣

∣

∣

≤ h2

h2 + k2

∣

∣

∣

∣

∂u

∂x
(x∗, y + k)− ∂u

∂x
(x, y)

∣

∣

∣

∣

+
|hk|

h2 + k2

∣

∣

∣

∣

∂v

∂x
(ξ∗, y + k)− ∂v

∂x
(x, y∗)

∣

∣

∣

∣

+
k2

h2 + k2

∣

∣

∣

∣

∂u

∂x
(x, η∗)−

∂u

∂x
(x, y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂u

∂x
(x∗, y + k)− ∂u

∂x
(x, y)

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∂v

∂x
(ξ∗, y + k)− ∂v

∂x
(x, y∗)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u

∂x
(x, η∗)−

∂u

∂x
(x, y)

∣

∣

∣

∣

(2.18)

by virtue of the triangle inequality and the fact that each of the fractions

h2

h2 + k2
,

2|hk|
h2 + k2

, and
k2

h2 + k2

is less than or equal to 1. Each of the three differences of partial derivatives in (2.18)
can be made small by making |ζ − z| =

√
h2 + k2 small. Specifically, given ǫ > 0,

there is some δ1 > 0 for which

0 < |ζ − z| < min{δ0, δ1} impies |Re(w)− ux(x, y)| <
ǫ√
2
.
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Exercise 2.20 Show there exists some δ2 > 0 for which

0 < |ζ − z| < min{δ0, δ2} impies | Im(w)− vx(x, y)| <
ǫ√
2
.

Putting these estimates together we conclude that for 0 < |ζ−z| < δ = min{δ0, δ1, δ2}
there holds

∣

∣

∣

∣

f(ζ)− f(z)

ζ − z
− [ux(x, y) + ivx(x, y)]

∣

∣

∣

∣

=
√

|Re(w)− ux(x, y)|2 + | Im(w)− vx(x, y)|2
< ǫ. �

Exercise 2.21 Redo the entire proof of Theorem 3 incrementing along the alterna-
tive horizontal and vertical lines in U , writing for example

u(x+ h, y + k)− u(x, y) = u(x+ h, y + k)− u(x+ h, y) + u(x+ h, y)− u(x, y)

and/or

v(x+ h, y + k)− v(x, y) = v(x+ h, y + k)− v(x+ h, y) + v(x+ h, y)− v(x, y)

instead of

u(x+ h, y + k)− u(x, y) = u(x+ h, y + k)− u(x, y + k) + u(x, y + k)− u(x, y)

and

v(x+ h, y + k)− v(x, y) = v(x+ h, y + h)− v(x, y + k) + u(x, y + k)− u(x, y).

2.5 Complex differentiability and the domain

There are some important and interesting topics, and some useful terminology and
examples, in sections 25-29 of Chapter 2 of BC. My inclination, however, is to hit
some of the (necessary) high points and leave most of it for later. One reason for
this, is that some results from later are quoted, and I don’t think one can get, at this
point, a clear view of why those results hold. The basic topics fall under the heading
of analytic continuation and the reflection principle. The underlying idea is
that if two complex differentiable functions f, g : U → C have the same values on a
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collection of distinct points {zj}∞j=1 ⊂ U , where U is an open subset of C as usual
which is connected, and the the points {zj}∞j=1 have an accumulation point z0 ∈ U ,
then f ≡ g on U .

The concept of a set U ⊂ C being connected is relatively straightforward to
explain at this point, though I don’t think we/I have done it. The basic reason
two such complex differentiable functions end up being the same function, however,
follows from a relatively deep (and very important) fact about complex differentiable
functions which really is only taken up in Chapter 4 of BC. So I think we/you should
work hard on Chapter 4 and then come back to these topics. And of course, to do
that we/you need to work hard on Chapter 3 to get to Chapter 4. In any case, for
now, I will try to give some kind of brief overview/summary of the rest of Chapter 2
with emphasis on a very few points.

§ 25

Three things to note here:

1. (terminology) If f : U → C is complex differentiable and U = C, then f is said
to be entire.

2. (terminology) If U is an open subset of C and f : U\{z0} → C, then z0 is said
to be an isolated singularity.

3. (connected sets) The topic of connectedness is not really addressed properly
anywhere in Chapter 1 or Chapter 2 of BC (and probably not anywhere in the
book). It is a relatively easy topic however, and it is pretty important (I think),
so let me discuss it properly now.

Let’s first start with open sets. This is, in fact, I think the only case mentioned (and
used) in BC.

Definition 10 An open set U ⊂ C is connected if U is not the union of two
nonempty, disjoint, open subsets.

Of course, this definition is worth thinking about a little bit. It says, for example,
that if U1, U2 ⊂ U satisfying

(i) U = U1 ∪ U2,

(ii) U1, U2 are open, and
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(iii) U1 ∩ U2 = φ,

then one of the sets U1 or U2 is empty.

Exercise 2.22 Rephrase the definition of connected as I have done giving various
assumptions about the sets U1 and U2 and then concluding what must be true about
U1 and U2. I guess there are three main obvious rephrasings assuming U1 and U2 are
nonempty.

Here is a different formulation:

Definition 11 An open set U ⊂ C is path connected if given any two points
z, w ∈ U , there is a path in U connecting z to w.

A path is a continuous function γ : [a, b] → C where a, b ∈ R with a < b so that
[a, b] is some closed interval. We say a path γ is in U if γ(t) ∈ U for all t ∈ [a, b], or
equivalently γ : [a, b] → U . Such a path connects z to w if γ(a) = z and γ(b) = w.

One special kind of path (in C) is a straight line path from one point z ∈ C to
another points w ∈ C:

γ : [0, 1] → C by γ(t) = (1− t)z + tw.

If one concatenates straightline paths, then one obtains what is called a polygonal
path. For example, if z, ζ, w ∈ C, then we can take the straight line paths

γ1(t) = (1− t)z + tζ and γ2(t) = (1− t)ζ + tw

and concatenate them by defining γ : [0, 2] → C with

γ(t) =

{

γ1(t), t ∈ [0, 1]
γ2(t− 1), t ∈ [1, 2].

You might notice that the domain interval [a, b] for a path is not really very significant
in defining the path. Also, the particular continuous dependence of a path is not very
significant. For example, the paths

α : [0, 1] → C by α(t) = (1− t)z + tw

and
β : [0, 1] → C by β(t) = (1− t2)z + t2w
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are, in some sense, not so different. One can move in the direction of properly
distinguishing between (and especially not distinguishing between) various paths by
defining various equivalence relations or demanding that all paths be considered on a
single standard closed interval, say [0, 1], but we really don’t have too much need to
get into that at the moment. We may, at some point, want to assert the uniqueness
of some path from one point to another, in some way shape or form, but hopefully
we can cross that path when we come to it.

Let’s see if I can state the main results with what we have so far.

Theorem 4 An open set U ⊂ C is connected if and only if U is path connected.

Theorem 5 An open set U ⊂ C is path connected if and only if each pair of points
z, w ∈ U can be connected to one another by a polygonal path in U .

Exercise 2.23 Prove Theorem 4.

Exercise 2.24 Prove Theorem 5.

In closing, the concept of a set being connected may be extended to subsets of C which
are not open: A set A ⊂ C is connected if whenever U1 and U2 are open subsets of C
with A = (U1 ∩ A) ∪ (U2 ∩ A), then one of the following must hold

(i) (U1 ∩A) ∩ (U2 ∩A) 6= φ or

(ii) one of the sets U1 ∩ A or U2 ∩A is empty.

For sets that are not open, being connected is not equivalent to being path connected
in general.

Exercise 2.25 Define what it means for any set A ⊂ C to be path connected, and
prove that any path connected set is connected.

Exercise 2.26 Give and example of a connected set A ⊂ C which is connected but
not path connected.

I don’t think we really need these more general defintions concerning connectedness,
but they are fun.

Even more generally, the concept of a set being connected can be extended to
any topological space. Rather than get into the details of what it means to be a
topological space (which is also pretty easy, but we need to get to Chapters 3, 4, and
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5 of BC) let me just say that a topological space is a set in which one knows what it
means for a subset to be open. And let me give an example: For any set A ⊂ C we
can declare a subset V ⊂ A to be open if V = A ∩ U for some open set U ⊂ C. The
collection of sets

{U ∩ A : U is open in C}

is called the relative topology on A; this is the collection of subsets of A consid-
ered/known to be open.

Exercise 2.27 Knowing now what it means to be open in A, go back and rephrase
or “simplify” the definition of what it means for A to be connected.

Having given this discussion of connected sets, we can prove something:

Theorem 6 If U ⊂ C is an open connected set and f : U → C is complex differen-
tiable with f ′(z) = 0 for each z ∈ U , then there is some constant w0 ∈ C for which
f(z) = w0 for all z ∈ U .

Proof: Let z0 ∈ C. Then there is some r > 0 for which Br(z0) ⊂ U . Let r be any
positive number for which Br(z0) ⊂ U . If ζ ∈ Br(z0), then there is a straight line
path connecting z0 to ζ in U . Let’s try to consider

d

dt
f((1− t)z0 + tζ).

If by this, we just mean

d

dt
Re(f)((1− t)x0 + tα, (1− t)y0 + tβ) + i

d

dt
Im(f)((1− t)x0 + tα, (1− t)y0 + tβ)

=
d

dt
u((1− t)x0 + tα, (1− t)y0 + tβ) + i

d

dt
v((1− t)x0 + tα, (1− t)y0 + tβ),

where z0 = x0+iy0 and ζ = α+iβ, then we should be able to compute this derivative.
In fact, this is what I mean.

Consider the quantity

d

dt
u((1− t)x0 + tα, (1− t)y0 + tβ).
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The chain rule from multivariable calculus tells us that if u ∈ C1(γ−1(U)), then

d

dt
u((1− t)x0 + tα, (1− t)y0 + tβ)

=
∂u

∂x
((1− t)x0 + tα, (1− t)y0 + tβ) (α− x0)

+
∂u

∂y
((1− t)x0 + tα, (1− t)y0 + tβ) (β − y0).

We know, however, that f ′ = ux + ivx and f ′ ≡ 0. This means ux ≡ 0, and

∂u

∂x
((1− t)x0 + tα, (1− t)y0 + tβ) ≡ 0

in particular. Similarly, uy = −vx ≡ 0. Therefore,

d

dt
u((1− t)x0 + tα, (1− t)y0 + tβ) ≡ 0

as a (continuous) real valued function of one variable. Therefore, by integration and
the fundamental theorem of calculus

u(α, β) = u(x0, y0) +

∫ 1

0

d

dt
u((1− t)x0 + tα, (1− t)y0 + tβ) dt = u(x0, y0).

It follows similarly that Im f(ζ) = v(α, β) = v(x0, y0). That is, f(ζ) = f(z0), and f
is constant on the entire ball Br(z0). What we have shown here then is that the set

{z ∈ U : f(z) = f(z0)}

is an open subset of C.

Exercise 2.28 Show {z ∈ U : f(z) 6= f(z0)} is an open subset of C.

According to Exercise 2.28 the connected set U can be expressed as a disjoing union

U = {z ∈ U : f(z) = f(z0)} ∪ {z ∈ U : f(z) 6= f(z0)}

of two open sets. Since the first one is not empyty, the second one must be empty
and f(z) ≡ f(z0) is constant. �
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Exercise 2.29 Prove the chain rule for composition of a function of two real variables
on a differentiable vector valued function: If u : U → R is continuously differentiable
on an open set U ⊂ R2, i.e., u ∈ C1(U), and v : (a, b) → R2 is a vector valued function
defined on an interval (a, b) ⊂ R, with v = (v1, v2) having component funtions vj ∈
C1(a, b) for j = 1, 2, then

d

dt
u ◦ v(t) = ∂

∂x
(v(t))

dv1
dt

(t) +
∂

∂y
(v(t))

dv2
dt

(t).

Aside from what we have covered above, there is some other terminology of minor
importance. We know there is a definition of what it means for a function f : U → C

to be complex differentiable at a point. We are primarily interested in situations in
which f : U → C is complex differentiable at every point in an open set U . In this case,
the function f is variously called complex differentiable, analytic, holomorphic,
and maybe even regular—though the last one is not used too much any more. The
examples in § 26 of BC are good to consider. Please consider them.

Harmonic functions

The big assuption here is that if f = u + iv : U → C is complex differentiable, then
u, v ∈ C2(γ−1(U)). Once you know that, showing the real and imaginary parts u and
v satisfy Laplace’s equation is straightforward. This is Problem 10 is Assignment 6.

If you haven’t noted it already, it’s good to be aware of what Laplace’s equa-
tion looks like, and it’s good to know that solutions of Laplace’s equation are called
harmonic functions.

The fact that these functions u = Re(f) and v = Im(f), which nominally only
need the first order partial derivatives to exist in order to satisfy the conditions for
f ′ to exist or to satisfy the Cauchy-Riemann equations, actually turn out to have so
many unexpected partial derivatives is called regularity or additional regularity.

The level sets of harmonic functions are interesting to consider as is done briefly
in BC in the exercises at the end of § 27. I suggest we try to come back to this.

Analytic continuation and the reflection principle

I discussed these briefly above, and I’ll just mention here that they are discussed in
the last two sections of Chapter 2 in BC; we should come back to them after Chatper 4
in BC (or maybe after Chatper 5).
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Chapter 3

Elementary Functions

These notes are from Chapter 3 of BC.
Let me recall that Chapter 2 was primarily about the general notion of what it

means for a complex function f : Ω → C where Ω is an open subset of C to be
(complex) differentiable.

At this point I think/hope you are fairly familiar with the complex differentiable
function f : C → C by f(z) = z2. In fact, you should hopefully be fairly familiar
with f : C → Σ = Σ1 ∪ Σ2 where Σ is a/the Riemann surface associated with
f(z) = z2 consisting of two sheets and having branch cuts and a branch point (at
z = 0). The square function, then, has also a well-defined inverse f−1 : Σ → C which
we may denote by f−1(z) =

√
z, but technically (and practically) this function will

be considered and defined in terms of branches of the square root.
Though we will not discuss it further here, we have also discussed to some extent

the values of f(z) = zn, the associated Riemann surfaces and inverses, that is taking
n-th roots when n is a natural number.

We have also discussed, to a certain extent, the complex exponential function
f(z) = ez, though if we consider the situation honestly, we have really only considered
the restriction of this function to the real axis where

f(x) = ex

is the familiar real exponential and to the imaginary axis where

f(iy) = eiy = cos y + i sin y

is a function which behaves quite differently. Probably it’s fair to say, that we, i.e.,
you, didn’t actually think about f(iy) in too much detail. It is now time to do that,

93



94 CHAPTER 3. ELEMENTARY FUNCTIONS

and furthermore to extend the same consideration to the full complex exponential

f(z) = ex(cos y + i sin y)

as well as various other functions, perhaps quite notably the complex trigonometric
functions.

In summary, there are quite a few complex functions with which one should become
familiar. These include

1. integer power functions,

2. polynomials,

3. various branches of roots,

4. the exponential function and its inverse the complex logarithm,

5. more general powers both of the variable f(z) = zα and with variable power
f(z) = αz,

6. trigonometric functions, sin z, cos z, tan z, csc z, etc. and their inverses,

7. and also hyperbolic functions like cosh z and sinh z, which turn out to be nom-
inally simpler functions simply related to the complex exponential, but are
probably somewhat less familiar to you even in their real forms.

I think that’s a pretty good list. You probably won’t become an expert on all of these
functions this semester, but hopefully you can master the use and understanding of
some of them, and this will put you in a position to deal with the others when the
need arises. All of them can (and I might say probably should) be thought of in terms
of mappings. There is usually a Riemann surface involved, and it helps to identify
fundamental domains which is something I will try to discuss below. Perhaps that
is enough of an introduction, so let’s try to get started with §30 of BC.

3.1 The complex exponential

As is mentioned in BC, one way to define the complex exponential exp : C → C is
by taking the formula above, which in turn is based on Euler’s formula:

exp(z) = ex(cos y + i sin y). (3.1)



3.1. THE COMPLEX EXPONENTIAL 95

It may be mentioned that there are other ways to define the complex exponential,
most notably in terms of power series as

exp(z) =

∞
∑

n=0

1

n!
zn.

Then one can derive Euler’s formula and (3.1) as consequences, but that is not the
point of view we are going to take here. This important approach is taken up in
Chapter 5 of BC. Let’s begin by considering the Euler formula as a mapping. First
of all, we might note that horizontal lines L = {z ∈ C : Im(z) = y0} map (in)to rays

{exeiy0 : x ∈ R}

with an endpoint at w = 0 and having fixed argument y0. Each such ray intersects
the unit circle at a point corresponding to Re(z) = x = 0 at w = eiy0. The portion

{x+ iy0 : x < 0}

of the line L, which is a half-line, maps into the unit disk between w = 0 and w = eiy0 .
The right half line {x+ iy0 : x > 0} maps to a ray extending from w = eiy0 to w = ∞
in the Riemann sphere.

The horizontal strip Σ0 = {z = x + iy : 0 ≤ y < 2π}, which of course consists
of a particular union of horizontal lines is called a fundamental domain for ez and
has image C\{0}. We can call this particular image L0 and note that it is one sheet
of the Riemann surface associated with the exponential function. It should be more
or less clear that f(z) = exp(z) restricted to a fundamental domain Σ0 is a bijection
onto its image. The inverse log0 : L0 → Σ0 is a branch of the complex logarithm.
Notice z = log0(w) is the complex number for which

ez = ex(cos y + i sin y) = w and 0 ≤ y < 2π.

Taking the modulus of both sides in the relation ez = ex(cos y + i sin y) = w, we find

ex = |w|.

Consequently, we can find the real part of log0(w) using the familiar real logarithm
ln : (0,∞) → R. That is,

Re log0(w) = x = ln |w| = ln
√

Re(w)2 + Im(w)2. (3.2)



96 CHAPTER 3. ELEMENTARY FUNCTIONS

Exercise 3.1 (complex exponential)

(a) It may occur to you that while

ez = ex(cos y + i sin y)

gives a well-defined formula for the function exp : C → C\{0} or alternatively

exp : C → L =

∞
⋃

j=−∞

Lj ,

it is not immediately clear that this function is complex differentiable. Use the
sufficient condition associated with the Cauchy-Riemann equations to show exp
is complex differentiable.

(b) Use the chain rule to show the branch log0 : L0 → Σ0 defined above is complex
differentiable (at least on int(L0)).

(c) Recall that the real and imaginary parts of a complex differentiable function are
harmonic. What interesting harmonic function do you see in (3.2)?

The imaginary part of log0(w) is a little more complicated to contemplate. Indeed,
we know there is a unique y ∈ [0, 2π) for which cos y + i sin y = w/|w|, but there is
not a simple formula. We have encountered this value before, however, and we have
a nice notation:

log0(w) = ln |w|+ iArg(w).

How about this?

Im log0(w) =























tan−1(y/x), x > 0, y ≥ 0, (first quadrant)
cot−1(x/y), y > 0, (upper half plane)
tan−1(y/x) + π, x < 0, (left half plane)
cot−1(x/y) + π, y < 0, (lower half plane)
tan−1(y/x) + 2π, x > 0, y ≤ 0, (fourth quadrant).

Here I have used what are called the principal real branches of arctangent and ar-
ccotangent which are the inverses of tan : (−π/2, π/2) → R and cot : (0, π) → R

respectively.
Hopefully, it’s clear to you that these nice smooth principal real branches of arc-

tangent and arccotangent can be used to find a nice non-singular formula for the
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complex argument, and consequently for the imaginary part of the complex loga-
rithm, locally near any point in any specified sheet of L. Roughly speaking then, we
can write

logw = ln |w|+ i arg(w),

though we (may) have to be a little careful with the imaginary part here.
The complex exponential and complex logarithm are rather important functions. I

will temporarily finish these notes on this topic with a final observation: The complex
exponential is complex periodic, meaning there is a complex number ω ∈ C\{0}
for which

exp(z + ω) = exp(z) for all z ∈ C.

The complex period of the exponential function is ω = 2πi.

Exercise 3.2 (complex periodicity) Define what it means for a complex differentiable
function f : U → C defined on an open subset U of C to have complex period ω. Be
careful to state any conditions that must be satisfied by the domain U .

Exercise 3.3 (complex periodicity) Find an entire function with period 1 + i.

3.2 Complex Powers

These are notes starting in § 35 of BC.
Given a branch log of the complex logarithm and a complex number α ∈ C, a

branch of zα is defined by
zα = eα log z.

Exercise 3.4 (complex powers, Exercises 3.36.1-3 in BC) Discuss the values of

(a) (1 + i)i.

(b) (−i)i.

(c) (−1 +
√
3 i)3/2.

Given a branch log of the complex logarithm and a complex number α ∈ C, a
branch of αz is defined by

αz = ez logα.

Exercise 3.5 (complex powers) How does the exponential function ez compare/correspond
to the branches of

ez log e?
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3.3 Trigonometric functions

Notes starting in § 37 of BC.

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Exercise 3.6 Show the complex cosine and complex sine are entire.

Exercise 3.7 Compute
d

dz
eiz.

Exercise 3.8 (mapping properties) Find a fundamental domain for the complex co-
sine, i.e., a subset E of C for which the image

{cos(z) : z ∈ E} = C.

Exercise 3.9 (mapping properties) Find a fundamental domain for the complex sine,
i.e., a subset E of C for which the image

{sin(z) : z ∈ E} = C.

Exercise 3.10 (formula) Find formulas for the real and imaginary parts of cos z as
functions of x and y in z = x+ iy.

Exercise 3.11 (formula) Find formulas for the real and imaginary parts of sin z as
functions of x and y in z = x+ iy.

When you finish the exercises above you should be able to see the complex co-
sine and sine as functions with fundamental domains given by strips. Each strip
corresponds to a sheet in the Riemann surface for the function, and the sheets have
two branch points at ±1 with cuts extending to w = ∞ along the real axis and a
non-singular segment [−1, 1] on the real axis.

For each sheet in the Riemann surface there is a branch of the inverse. For
example, the cosine has fundamental domains

Aj = {z ∈ C : jπ < Re(z)(j + 1)π} ∪ {jπ + iy : y ≤ 0} ∪ {(j + 1)π + iy : y > 0}

for j ∈ Z. These correspond to sheets Cj for j ∈ Z and associated to each sheet is a
branch of cos−1 = arccosj : Cj → Aj such that

cos ◦ arccosj(w) = w ∈ Cj .
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It takes a little checking, but some version of the usual derivative formulas

d

dw
arccosj(w) = − 1√

1− x2
and

d

dw
arcsinj(w) =

1√
1− x2

also hold. The point one has to be careful about is specifying the particular branch
of the square complex square root that should be used.

3.4 Complex tangent

Maybe it can be said that we need to up our game a bit to deal with the complex
tangent, but basically this function is not so different. One significant difference is
that branch points in the Riemann surfaces considered so far have been the images
of points in the finite part of the Riemann sphere or is not included in the Riemann
surface. For example, the branch point for f(z) = zn is at w = 0 = f(0). The branch
point for f(z) = ez is at w = 0. There is of course no z for which ez = 0. Finally, it
will be recalled that the branch points for f(z) = cos z are located at z = ±1 with
−1 = cosπ and 1 = cos 0.

Let me just say that something new happens in this regard with respect to tangent,
so keep an eye out for it.

I guess we should start with a formula for the real and imaginary parts. It will
help to note/recall some double angle formulas:

cos 2x = cos2 x− sin2 x and sin 2x = 2 cosx sin x.

Also,
cosh 2y = cosh2 y + sinh2 y and sinh 2y = 2 cosh y sinh y.

These latter formulas are consequences of the formulas

cosh2 y =
e2y + 2 + e−2y

4
and sinh2 y =

e2y − 2 + e−2y

4

for the squares of

cosh y =
ey + e−y

2
and sinh y =

ey − e−y

2
.

One also has

cos2 x+ sin2 x = 1 and cosh2 y − sinh2 y = 1.
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Finally, we recall the important formulas we needed for the complex cosine and sine:

cos(x+iy) = cosx cosh y−i sin x sinh y and sin(x+iy) = sin x cosh y+i cosx sinh y.

With these formualas in mind we turn to tan z = tan(x+ iy).

tan z =
sin x cosh y + i cosx sinh y

cosx cosh y − i sin x sinh y

cosx cosh y + i sin x sinh y

cosx cosh y + i sin x sinh y

=
cosx sin x(cosh2 y − sinh2 y) + i cosh y sinh y(cos2 x+ sin2 x)

cos2 x cosh2 y + sin2 x sinh2 y

=
cosx sin x

cos2 x+ sinh2 y
+ i

cosh y sinh y

cos2 x+ sinh2 y

=
sin 2x

cos 2x+ cosh 2y
+ i

sinh 2y

cos 2x+ cosh 2y

because

2 cos2 x+ 2 sinh2 y = cos2 x+ 1− sin2 x+ sinh2 y + cosh2 y − 1

= cos 2x+ cosh 2y.

The real interval (−π/2, π/2) maps to the entire real axis monotonically with
tan(0) = 0. We know this from the real tangent. Setting x = 0 in the main formula

tan(x+ iy) =
sin 2x

cos 2x+ cosh 2y
+ i

sinh 2y

cos 2x+ cosh 2y
(3.3)

we see

tan iy = i
2 cosh y sinh y

1 + cosh2 y + sinh2 y
= i

sinh y

cosh y
= i tanh y.

Also,

tan
(π

2
+ iy

)

= i
2 cosh y sinh y

−1 + cosh2 y + sinh2 y
= i

cosh y

sinh y
= i coth y.

The real functions tanh y and coth y may not be entirely familiar. The real hyperbolic
tangent is an extremely nice function. It has no singularity. It is increasing and
bounded. Its values are asymptotic to 1 on the right and to −1 on the left much like
2 tan−1(x)/π and it has derivative sech2(0) = 1 at x = 0 like tan−1(x). See Figure 3.1.
The real hyperbolic cotangent, on the other hand, does have a singularity at x = 0.
All values of this function are greater than one, and the values tend to 1 as |x| → ∞.
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Figure 3.1: The real hyperbolic tangent and cotangent.

The function is smoothly decreasing on each of the individual intervals x < 0 and
x > 0.

Having made these observations, let us turn to the properties of tan z as a map of
the complex plane into itself, or more properly into an appropriate Riemann surface
for tanz. The familiar singular behavior of the real tangent, tanx tells us that the
real interval between z = x = −π/2 and z = x = π/2 maps to the entire real
line, symmetrically with tan(0) = 0. The entire vertical also, in view of the relation
tan(iy) = i tanh y on the other hand, maps monotonically and symmetrically onto
the finite open interval between −i and i. These mapping properties of the complex
tangent on the axes are indicated in Figure 3.2.

Notice the limit iyto∞ with y positive and increasing in the domain correspond
to the limit

lim
yր∞

tan(iy) = i.

In fact, this is an increasing limit, so we can informally include some additional
information by writing

tan(iy) ր i as y ր ∞,

though this is in no way intended to imply an ordering among complex numbers.
There is an ordering on the imaginary axis. With this in mind, consider the line
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Figure 3.2: The complex tangent on a fundamental domain.

Re z = π/2 and the limit π/2+ iy as y ր ∞ in particular. According to the formula
tan(π/2 + iy) = i coth y, we see

tan(π/2 + iy) ց i as y ր ∞.

This is also indicated by the black dashed line in Figure 3.2. More generally, we can
consider the vertical half lines Re(z) = x+ iy with 0 < x < π/2 and the limits

lim
yր∞

tan(x+ iy)

in particular. It is easy to see from (3.3) that this limit has value i as well. Thus, for
each fixed x with −π/2 < x < π/2 the image

{tan (x+ iy) : y > 0}

is a curve in the first quadrant meeting the real axis at (a right angle at) w = tanx
and connecting this point to w = i. These image curves are not drawn in Figure 3.2,
but some similar images of vertical lines Re(z) = x with −π/2 < x < 0 are drawn with
red dashed lines. The graphic suggests each such image curve is a circle, or portion
of a circle, with center and radius depending only on x. The actual location of the
center and value of the radius are not obvious from the geometry, so let’s set aside
the suggestion for a moment and consider instead a different collection of images.
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The image of each horizontal segment {x + iy : 0 ≤ x ≤ π/2} for y > 0 fixed
coresponding to the blue dashed lines in Figure 3.2 also appears to be a cirlce. In
this case, we know the images of the endpoints:

tan(iy) = i tanh y and tan(π/2 + iy) = i coth y.

Thus, if the image is a circle meeting the imaginary axis at a right angle as suggested
by the graphic, then the center and radius of this circle should be given by

w =
i

2
(tanh y + coth y) = i

sinh2 y + cosh2 y

2 cosh y sinh y
= i

cosh 2y

sinh 2y
= i coth 2y

and

r =
1

2
(coth y − tanh y) =

cosh2 y − sinh2 y

2 cosh y sinh y
=

1

sinh 2y

respectively. That the image is actually a semicircle with this center and radius can
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be verified as follows:

| tan(x+ iy)− w|2 =
(

sin 2x

cos 2x+ cosh 2y

)2

+

(

sinh 2y

cos 2x+ cosh 2y
− coth 2y

)2

=
sin2 2x sinh2 2y + [sinh2 2y − cosh 2y(cos 2x+ cosh 2y)]2

sinh2 2y(cos 2x+ cosh 2y)2

=
1

sinh2 2y(cos 2x+ cosh 2y)2

{

sinh2 2y[sin2 2x+ sinh2 2y − 2 cosh 2y(cos 2x+ cosh 2y)]

+ cosh2 2y(cos 2x+ cosh 2y)2
}

=
1

sinh2 2y(cos 2x+ cosh 2y)2

{

sinh2 2y[− cos2 2x+ cosh2 2y − 2 cosh 2y(cos 2x+ cosh 2y)]

+ cosh2 2y(cos 2x+ cosh 2y)2
}

=
1

sinh2 2y(cos 2x+ cosh 2y)2

{

sinh2 2y(cos 2x+ cosh 2y)[cosh 2y − cos 2x− 2 cosh 2y]

+ cosh2 2y(cos 2x+ cosh 2y)2
}

=
sinh2 2y(−1) + cosh2 2y

sinh2 2y

=
1

sinh2 2y
.

The images of the vertical lines are also circles, though as mentioned above, the
centers and radii of these circles may not be immediately obvious. Upon further
reflection on the following two suggestions

(i) The complementary circular arc of

{tan (x+ iy) : y ∈ R} ,
which we assume to be part of a circle with center on the real axis, must be
the image of a vertical line Re z = ξ with ξ < 0 taking a value “symmetric” (in
some sense) to the value x > 0.
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(ii) It is possible (or even likely) that the intersection points ξ < 0 < x and the
corresponding center w and radius r have values (in some sense) algebraically
symmetric with the values

tan(iy) = i tanh y, tan(π/2+iy) = i coth y, w = i coth 2y, and r = sech 2y

for the circles passing through the imaginary axis.

A first value to try is ξ = x− π/2. This gives

tan x and tan
(π

2
− x
)

= − coth x.

It will be noted that these values do indeed bear some resemblance to the correspond-
ing image values for the horizontal lines, and thus ξ = x − π/2 is a natural value to
consider “symmetric” to x. Indeed, assuming a circle is orthogonal to the real axis
and passes through these values, we have for the center and radius

w =
1

2
(tanx− cotx) = −cos2 x− sin2 x

2 cosx sin x
= − cot 2x

and

r =
1

2
(cot x+ tan x) =

cos2 x+ sin2 x

2 cosx sin x
=

1

sin 2x
.

By this time, we should start to believe we are on the right track. Indeed a calculation
much like that for the images of the horizontal segments confirms out suspicion.
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| tan(x+ iy)− w|2 =
(

sin 2x

cos 2x+ cosh 2y
+ cot 2x

)2

+

(

sinh 2y

cos 2x+ cosh 2y

)2

=
[sin2 2x+ cos 2x(cos 2x+ cosh 2y)]2 + sin2 2x sinh2 2y

sin2 2x(cos 2x+ cosh 2y)2

=
1

sin2 2x(cos 2x+ cosh 2y)2

{

sin2 2x[sin2 2x+ sinh2 2y + 2 cos 2x(cos 2x+ cosh 2y)]

+ cos2 2x(cos 2x+ cosh 2y)2
}

=
1

sin2 2x(cos 2x+ cosh 2y)2

{

sin2 2x[− cos2 2x+ cosh2 2y + 2 cos 2x(cos 2x+ cosh 2y)]

+ cos2 2x(cos 2x+ cosh 2y)2
}

=
1

sin2 2x(cos 2x+ cosh 2y)2

{

sin2 2x(cos 2x+ cosh 2y)[cosh 2y − cos 2x+ 2 cos 2x]

+ cos2 2x(cos 2x+ cosh 2y)2
}

=
sin2 2x+ cos2 2x

sin2 2x

=
1

sin2 2x
.

3.5 Derivatives

We could (and perhaps should) give a little more consideration of formulas like

d

dw
sin−1w =

1√
1− w2

and
d

dw
tan−1w =

1

1 + w2
.

The point is, above all, that these formulas involve branches of the various functions
involved, and those branches should be specified carefully and the values checked/considered.
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3.6 Summary

We’ve discussed some elementary functions, starting with the complex square function
f(z) = z2. Hopefully, you understand this function and its Riemann surface and
the branches of its inverse completely. The integer power functions f(z) = zn for
n = 3, 4, 5, . . . have n-sheeted Riemann surfaces and n branches of inverse functions,
but they are rather direct generalizations of f(z) = z2.

We’ve also discussed the complex exponential function f(z) = ez and its Riemann
surface with countably many sheets each of which is a domain for a branch of the
complex logarithm log(w). The branch point w = 0 itself is not included becuase
ez 6= 0 for any z ∈ C.

Finally, we have the complex trigonometric functions cos z, sin z and tan z. Each
of these have two branch points in each sheet of the Riemann surface, though the
tangent has a rather different character as a mapping. In particular, the complex
cosine and complex sine are completely regular, with the branch points −1 = cos(π),
1 = cos(0), and ±1 = sin(±π/2) regular points in the respective Riemann surfaces
while the complex tangent has both a sequence of countably many (double) poles
at π/2 + kπ for k ∈ Z and excluded branch points at ±i with tan z 6= ±i for any
z ∈ C. Again, there are the naturally associated branches of arccosine, arcsine, and
arctangent.

The complex exponential has an essential singularity at z = ∞. We will discuss
this topic more later. The same thing can be said about the complex cosine and
complex sine.

This is a good start. There are many other interesting and important complex
functions, but if you understand how to deal with the ones listed here, you are in a
good position to at least do a basic analysis of functions like the complex Gamma
function, the Lambert W function, the Riemann zeta function, and most any other
complex function you might run into (or at least know what such an analysis looks
like). To actually complete the analysis for many of these functions it is helpful
to know a bit more complex analysis and something about complex integration in
particular.
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Chapter 4

Complex Integration

4.1 Complex valued functions of one real variable

This section comprises my notes for sections 41 and 42 of BC.

I really like the way Brown and Churchill do this. Let me emphasize that these
functions γ : (a, b) → C with

γ(t) = α(t) + i β(t)

and (a, b) ⊂ R, which Brown and Scriven call1 w = w(t), and are not complex
functions f : U → C of a complex variable z ∈ U ⊂ C as we’ve been discussing
up until now. These functions are something different. They are very different from
f : U → C, but they are not very different from something else (or some other things)
you know.

Primarily it should be noted that a complex valued function γ = α + i β has a
derivative and an integral which are given by the definitions

dγ

dt
=
dα

dt
+ i

dβ

dt
(4.1)

and
∫ b

a

γ(t) dt =

∫ b

a

α(t) dt+ i

∫ b

a

β(t) dt (4.2)

1Brown and Churchill also write w(t) = u(t) + i v(t) using the same symbols for the real and
imaginary parts as is customarily used for the real and imaginary parts u = u(x, y) and v = v(x, y)
where z = x+iy of a real complex valued function of a complex variable. I think for an introduction,
it may be better to emphasize the distinction a little more explicity in the notation, so I’ve chosen
γ = α+ i β.

109
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when α and β are differentiable on (a, b) and continuous2 on [a, b] respectively. These
derivatives and integrals have certain properties like linearity

(c1γ + c2γ̃)
′ = c1γ

′ + c2γ̃
′ and

∫

(c1γ + c2γ̃) = c1

∫

γ + c2

∫

γ̃,

but it is probably fair to say that these properties are not different in any significant
way from the properties of derivatives and integrals of real valued functions of one
real variable with which you are familiar from Calculus 1. In particular, the functions
I have denoted by α and β are just real valued functions of one real variable like the
functions considered in Calculus 1.

Again, I want to emphasize that the derivative defined in (4.1) is not a complex
derivative like we have discussed in Chapter 2. Furthermore, we are going to define
a complex integral which looks something like

∫

Γ

f

associated with a complex valued function f : U → C of a complex variable z ∈ U , and
this is/will be a really new thing. We will use integrals of a complex valued function
of a real variable defined in (4.2) simply as a tool to talk about real complex integrals.
Of course, you still should get comfortable with using integrals and derivatives like
the ones defined in (4.2) and (4.1).

Exercise 4.1 Let γ = α + β i be a complex valued function of one real variable t.
Verify the following:

(a) (Exercise 4.42.1 in BC) (cγ)′ = cγ′ where c = a+ bi ∈ C.

(b) (f ◦ γ)′ = f ′ ◦ γ γ′ where f : U → C is complex differentiable on an open set
U ⊂ C and γ : (a, b) → U .

(c)
∫ b

a

γ′(t) dt = γ(b)− γ(a).

(d)
d

dt

∫ t

a

γ(τ) dτ = γ(t).

2Technically, I should say α and β extend continuously to the closed interval [a, b] here. Alter-
natively, I could integrate on some subinterval [t1, t2] ⊂ (a, b), but this involved more symbols than
I wanted to use.
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Some things are, believe it or not, simpler when these integrals are used. For
example, you may remember that integrals like

∫ π

0

ex cosx dx

normally require integration by parts (and maybe even repeated integration by parts)
to compute. However, look at this:

∫ π

0

e(1+i)t dt =
1

1 + i
e(1+i)t∣

∣

π

t=0

=
1− i

2

[

e(1+i)π − 1
]

=

(

1

2
− i

2

)

[−eπ − 1]

= −e
π + 1

2
+
eπ + 1

2
i.

On the other hand,
e(1+i)t = et(cos t+ i sin t),

so
∫ π

0

e(1+i)t dt =

∫ π

0

et cos t dt+ i

∫ π

0

et sin t dt.

Equating real and imaginary parts, we get
∫ π

0

et cos t dt = −e
π + 1

2
and

∫ π

0

et sin t dt =
eπ + 1

2

without any explicit use of integration by parts. (Cool!)

4.2 Complex Integration

As mentioned above a complex integral
∫

Γ

f

of a function f : U → C is an integral over a curve Γ ⊂ U . A curve can (essentially
always) be parameterized by a function

α : [a, b] → U
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with α = α1 + iα2 continuous, meaning the real and imaginary parts α1 = Reα
and α2 = Imα are continuous real valued functions on the interval [a, b]. Most
times we will integrate over curves Γ which can be parameterized with α1 and α2

continuously differentiable (except perhaps at isolated points). Some details about
curves will/should become clear as we go along. Here is something good to know
about curves:

If α = α1 + iα2 : [a, b] → U is continuously differentiable, then the ar-
clength along Γ can be defined by

s =

∫ t

a

|α′(τ)| dτ.

In this case, s is an non-decreasing, continuously differentiable function
of t with

ds

dt
= |α′(t)|.

If |α′(t)| 6= 0, then s is increasing with an inverse ξ : [0, L] → [a, b] where

L =

∫ b

a

|α′(τ)| dτ

is the total length of Γ. The inverse is also differentiable and

ξ′(s) =
1

|α′ ◦ ξ(s)| .

Furthermore, Γ can be reparameterized by arclength. Specifically, we
can take γ : [0, L] → U by

γ(s) = α ◦ ξ(s)

and then

γ̇ =
dγ

ds
=

α′ ◦ ξ(s)
|α′ ◦ ξ(s)|

has unit modulus.

Exercise 4.2 Parameterize ∂Br(z0) by argument θ based at z0 and reparameterize
by arclength.

Exercise 4.3 Parameterize the straight line segment from z0 = x0 + iy0 to z1 =
x1 + iy1 with α(j) = zj for j = 0, 1. Reparameterize by arclength.
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4.3 Starter Definition
∫

Γ

f =

∫ b

a

f ◦ α(t) α′(t) dt (4.3)

where α is a continuously differentiable parameterization of Γ ⊂ U and f : U → C is
a complex valued function defined on an open set U ⊂ C as usual. Here we do not
need f to be complex differentiable, but usually we will have that. We do need f to
be continuous.

Technically we need to show the right side of (4.3) does not depend on the par-
ticular parameterization we use for Γ, but let’s ignore that detail for now. Here are
some interesting complex integrals:

∫

∂Br(z0)

1

z − z0
=

∫ 2π

0

1

z0 + reit − z0
ireit dt

= i

∫ 2π

0

1 dt

= 2π.

∫

Γ

z =

∫ b

a

γ(t) γ′(t) dt

=

∫ b

a

d

dt

[

1

2
γ(t)2

]

dt

=
1

2
γ(t)2∣

∣

b

a

=
1

2
[γ(b)2 − γ(a)2]. (4.4)

Exercise 4.4 Generalize (4.3) by allowing a piecewise continuously differen-
tiable parameterization of Γ. That is, consider α : [a, b] → U a continuous parame-
terization with

α∣
∣

[tj−1,tj ]

continuously differentiable for j = 1, 2, . . . , n

where a = t0 < t1 < t2 < · · · < tn = b is a partition of the interval [a, b].

Exercise 4.5 Show (4.4) still gives a valid formula for
∫

Γ
z for integrals of the type

considered in Exercise 4.4.
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4.4 Integration on Riemann surfaces

Section 46 of BC makes the interesting observtion that one can integrate over curves
Γ in a Riemann surface R. For example, let R = R0∪R1 be the two sheeted Riemann
surface for z2 and consider the curve α : [0, 4π] → R by

α(t) =

{

reit ∈ R0, 0 ≤ t < 2π
reit ∈ R1, 2π ≤ t < 4π.

Then
∫

Γ

√
w

makes sense where
√
w is the global complex square root function defined on R.

∫

Γ

√
w =

∫ 2π

0

√
reit/2 ireit dt+

∫ 4π

2π

√
reit/2 ireit dt

= ir3/2
∫ 4π

0

e3it/2 dt

=
2

3
r3/2 e

3it/2
∣

∣

4π

0

=
2

3
r3/2

[

e6πi − 1
]

= 0.

Exercise 4.6 Compute
∫

Γ

√
w

where γ : [0, π] → R by γ(t) = 3eit ∈ R0.


