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Hopefully you know by now what it means for a function f : U → C defined
on an open set U ⊂ C to be complex differentiable at a point z ∈ U and also
to be differentiable in U . Here we are going to focus on a function or functions
f : U → C complex differentiable at every point in the open set U .1 We consider
further, the following special case:

Definition 1 (set definition of isolated singularity) Given a complex differentiable
function f : U → C, we say the point z0 ∈ C is an isolated singularity of f if for
some r > 0 there holds

Br(z0)\{z0} = {z ∈ C : 0 < |z − z0| < r} ⊂ U.

Notice that according to this definition, it may be the case that z0 ∈ U (and f is
complex differentiable at z0) or it may be the case that z0 /∈ U . This latter case is
the case of primary interest.

In the situation when z0 ∈ U , we say z0 is a removable (isolated) singularity.
For example, we can take a complex differentiable function g : V → C and simply
consider the restriction f : U → C where

U = V \{z0} for some z0 ∈ V and f = g∣
∣

U

.

In this case, z0 becomes an isolated singularity for f , but there is an extension g :
U ∪{z0} → C for which g is complex differentiable on V = U ∪{z0}. Technically, the
situation we have just described does not include all removable singularities, but we
can use this simple observation as the basis for a definition:

1Other terms associated with functions like this are holomorphic, analytic, and conformal (map
or function). Each of these words has slightly different connotations associated with it. Some are
strictly speaking equivalent to, i.e., just mean the same thing as, “complex differentiabe on the open
set U ,” and others are not quite equivalent.
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Definition 2 (removable singularity) Given a complex differentiable function f :
U → C with an isolated singularity at z0 ∈ C, we say z0 is removable or is a
removable singularity if there exists a complex differentiable function g : U ∪
{z0} → C with restriction

g∣
∣

U

= f.

Here is a surprising theorem:

Theorem 1 (removable singularities) If f : U → C is complex differentiable and has
an isolated singularity at z0 ∈ C for which there exists some r > 0 with Br(z0)\{z0} ⊂
U and there exists some M > 0 for which

|f(z)| ≤M for all z ∈ Br(z0)\{z0}. (1)

then f has a removable singularity at z0.

This is called Riemann’s theorem. Let me see if I can prove it. For ǫ < r, we have

Bǫ(z0)\{z0} ⊂ U.

In particular, we can calculate the complex integral

∫

ζ∈∂Bǫ(z0)

f(ζ)

ζ − z
(2)

for every z ∈ Bǫ(z0) including z0. Remember that by the Cauchy integral formula2

the value of a complex differentiable function is given by a similar quantity:

g(z) =
1

2πi

∫

ζ∈∂Bδ(w)

g(ζ)

ζ − z

whenever g is complex differentiable function on an open set containing Bδ(w) and
z ∈ Bδ(w). I am going to try to use a kind of converse of the Cauchy integral formula.

2You might remember also that the Cauchy integral formula followed essentially, from the Cauchy
integral theorem by introducing and using some “connecting paths” between ∂Bδ(w) and an even
smaller circle centered at z. This was presented by Ethan Phan, though I think there are still
some details that could use some more attention. And finally, the Cauchy integral theorem can be
derived from Goursat’s lemma, though I don’t think we have quite nailed down the details of that
derivation—at least as a presentation in a class meeting. I have posted some notes that I think have
most of the details.
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My Basic claim is that the quantity

h(z) =

∫

ζ∈∂Bǫ(z0)

f(ζ)

ζ − z

defines a complex differentiable function on Bǫ(z0). In fact,

h(w)− h(z) =

∫

ζ∈∂Bǫ(z0)

[

f(ζ)

ζ − w
− [

f(ζ)

ζ − z

]

=

∫

ζ∈∂Bǫ(z0)

f(ζ)
w − z

(ζ − w)(ζ − z)
.

Therefore,
h(w)− h(z)

w − z
=

∫

ζ∈∂Bǫ(z0)

f(ζ)

(ζ − w)(ζ − z)
.

Notice that as w → z, the integrand here converges, uniformly in ζ ∈ ∂Bǫ(z0) for z
fixed, as w → z to

f(ζ)

(ζ − z)2
.

Note, in particular, that this “new” integrand is very much nonsingular as a function
of ζ ∈ ∂Bǫ(z0) for z ∈ Bǫ(z0) fixed.

3 Thus, it should be easy to believe that

lim
w→z

h(w)− h(z)

w − z
=

∫

ζ∈∂Bǫ(z0)

f(ζ)

(ζ − z)2
.

The fact that this limit exists happily as some complex number in C tells us that h
is complex differentiable as claimed.

The next question is:

What are the values of this differentiable function h?

Can you guess? If you guessed that for z ∈ Bǫ(z0)\{z0} there holds h(z) = 2πif(z),
then you would be correct. I’m going to try to show this very carefully and with the
details.

Let z ∈ Bǫ(z0)\{z0}. This means z − z0 6= 0. (You can’t argue with that!) Let
z − z0 = |z − z0|e

iθ so that

u =
z − z0
|z − z0|

= eiθ

has unit length and look at Figure 1.

3This kind of integrand, is not entirely “new” becuase you see this kind of thing in the formula
for the derivatives given in the “generalized” Cauchy integral formula, or that is to say, the Cauchy
integral formula(s) for the derivatives.
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Figure 1: A disk Bǫ(z0) ⊂ U and a point z ∈ Bǫ(z0)\{z0}. A diameter is determined
by z − z0 = |z − z0|u (left) and two disjoint compactly constained subdiscs Bη(z0)
and Bη(z) are determined by η = min{|z − z0|, (ǫ− |z − z0|)}/3 (right).

Let η satisfy

0 < η < min

{

|z − z0|

3
,
ǫ− |z − z0|

3

}

. (3)

Then
Bη(z0), Bη(z) ⊂ Bǫ(z0) and Bη(z0) ∩Bη(z) = φ.

Finally, we modify the closed contour given by the following concatenation:

β1(t) = z0 + ǫ ei(θ+t), 0 ≤ t ≤ π

β2(t) = (1− t)(z0 − ǫu) + t(z0 − ηu), 0 ≤ t ≤ 1

β3(t) = z0 + η ei(θ+π−t), 0 ≤ t ≤ 2π

β4(t) = (1− t)(z0 − ηu) + t(z0 − ǫu), 0 ≤ t ≤ 1

β5(t) = z0 + ǫ eit, θ + π ≤ t ≤ θ + 2π

β6(t) = (1− t)(z0 + ǫu) + t(z + ηu), 0 ≤ t ≤ 1

β7(t) = z + η ei(θ−t), 0 ≤ t ≤ 2π

β8(t) = (1− t)(z + ηu) + t(z0 + ǫu), 0 ≤ t ≤ 1.

Exercise 1 Simplify the formulas for βj, j = 1, 2, . . . , 8 and verify that the concate-
nation above is a closed curve.
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Our modification is made for each τ with 0 < τ < π/2, and we are interested ulti-
mately in the limit as τ ց 0. To be precise, we consider the concatenation

γ1(t) = z0 + ǫ ei(θ+t), τ ≤ t ≤ π − τ

γ2(t) = (1− t)(z0 + ǫei(θ+π−τ)) + t(z0 + ηei(θ+π−τ)), 0 ≤ t ≤ 1

γ3(t) = z0 + η ei(θ+π−t), τ ≤ t ≤ 2π − τ

γ4(t) = (1− t)(z0 + ηei(θ−π+τ)) + t(z0 + ǫei(θ−π+τ)), 0 ≤ t ≤ 1

γ5(t) = z0 + ǫ eit, θ + π + τ ≤ t ≤ θ + 2π − τ

γ6(t) = (1− t)(z0 + ǫei(θ−τ)) + t(z + ηei(θ−ψ)), 0 ≤ t ≤ 1

γ7(t) = z + η ei(θ−t), ψ ≤ t ≤ 2π − ψ

γ8(t) = (1− t)(z + ηei(θ+ψ)) + t(z0 + ǫei(θ+τ)), 0 ≤ t ≤ 1

where

ψ = arccos

(

ǫ cos τ − |z − z0|
√

ǫ2 cos2 τ − 2ǫ|z − z0| cos τ + |z − z0|2

)

and arccos : [−1, 1] → [0, π] is the standard real inverse cosine. See figure 2.

Figure 2: Simple closed curves bounded by arcs of circles and straight line segments.
A larger value τ = π/4 is illustrated on the left where the intersection angle ψ is a
little larger than π/2. A smaller value τ = π/8 is illustratted on the right.
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Exercise 2 Show the concatenation illustrated in Figure 2 is a simple closed curve.

Exercise 3 Draw the limiting contour for τ = π/2.

The simple closed curve given by this modification is the boundary of a bounded
open set J (given by the Jordan curve theorem, but also easily defined precisely in
this case). The closure J of the region J furthermore is contained in an open set
V = Br(z0)\{z0, z} on which the function φ : V → C by

φ(ζ) =
f(ζ)

ζ − z

is complex differentiable. By the Cauchy integral theorem we have

8
∑

j=1

∫

γj

φ = 0 (4)

for all τ with 0 < τ < π/2.
Next we compute some limits.

∫

γ1

φ =

∫ θ+π−τ

θ+τ

f(z0 + ǫeit)

z0 − z + ǫeit
iǫeit dt.

Notice the integrand does not depend on τ . Therefore,

lim
τ→0

∫

γ1

φ =

∫ θ+π

θ

f(z0 + ǫeit)

z0 − z + ǫeit
iǫeit dt.

Similarly,

lim
τ→0

∫

γ5

φ =

∫ θ+2π

θ+π

f(z0 + ǫeit)

z0 − z + ǫeit
iǫeit dt.

Putting these together,

lim
τց0

(
∫

γ1

φ+

∫

γ5

φ

)

= h(z).

This is a value of interest for us. Moving to the next portion of the contour indicated
in Figure 2,

∫

γ2

φ =

∫ 1

0

f(z0 + [(1− t)ǫ+ tη]ei(θ+π−τ))

z0 − z + [(1− t)ǫ+ tη]ei(θ+π−τ))
[−(ǫ− η)]ei(θ+π−τ) dt

= (ǫ− η)

∫ 1

0

f(z0 − [(1− t)ǫ+ tη]ei(θ−τ))

z0 − z − [(1− t)ǫ+ tη]ei(θ−τ))
ei(θ−τ) dt.
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Here the dependence on τ is entirely inside the integrand and (1) the argument of f
is bounded away from the singularity at z0 and (2) the denominator is also uniformly
bounded away from zero. Thus, the integrand converges uniformly for 0 ≤ t ≤ 1 as
τ → 0 to the nonsingular value

f(z0 − [(1− t)ǫ+ tη]eiθ)

z0 − z − [(1− t)ǫ+ tη]eiθ)
eiθ,

and

lim
τց0

∫

γ2

φ =

∫

β2

φ.

Also,
∫

γ4

φ =

∫ 1

0

(η − ǫ)
f(z0 − [(1− t)η + tǫ]ei(θ+τ))

z0 − z − [(1− t)η + tǫ]ei(θ+τ))
ei(θ+τ) dt,

and

lim
τց0

∫

γ4

φ =

∫

β4

φ = −

∫

β2

φ.

We conclude,

lim
τց0

(
∫

γ2

φ+

∫

γ4

φ

)

= 0.

Using the same approach presented above, it is easy to see

lim
τց0

∫

γ3

φ =

∫

β3

φ = −

∫

ζ∈∂Bη(z0)

f(ζ)

ζ − z
.

Also, we can compute the limit as τ ց 0 of the intersection angle ψ:

lim
τց0

arccos

(

ǫ cos τ − |z − z0|
√

ǫ2 cos2 τ − 2ǫ|z − z0| cos τ + |z − z0|2

)

= arccos(1) = 0.

From this it follows that

lim
τց0

∫

γ6

φ =

∫

β6

φ

and

lim
τց0

∫

γ8

φ =

∫

β8

φ = −

∫

β6

φ.
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In particular,

lim
τց0

(
∫

γ6

φ+

∫

γ8

φ

)

= 0.

We have one more integral to consider, namely lucky
∫

γ7

φ.

It should come as no surprise that

lim
τց0

φ = −

∫

ζ∈∂Bη(z)

f(ζ)

ζ − z
= −2πif(z)

by the Cauchy integral formula. Overall, we conclude

h(z) =

∫

ζ∈∂Bη(z0)

f(ζ)

ζ − z
+ 2πif(z).

and this identity holds for all η satisfying (3) and, in particular, for all positive η
small enough. This means we can take the limit as η tends to zero, and since the
denominator ζ − z remains bounded away from zero for ζ ∈ ∂Bη(z0), it follows that
the integrand φ(ζ) is bounded by some positive number A independent of η in the
limit. That is, we have an estimate

∣

∣

∣

∣

∣

∫

ζ∈∂Bη(z0)

f(ζ)

ζ − z

∣

∣

∣

∣

∣

≤ A(2πη) → 0 as η ց 0.

We conclude h : Bǫ(z0) → C is a complex differentiable function with h(z) = 2πif(z)
for z 6= z0, or in other words g : U ∪ {z0} → C by

g(z) =







1

2πi

∫

∂Bǫ(z0)

f(ζ)

ζ − z
, z ∈ Bǫ(z0)

f(z), z ∈ U

is a well-defined complex differentiable function with

g∣
∣

U

≡ f.

The function f has a removable singularity at z = z0. �
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Exercise 4 Give an example of a function φ : R2\{(0, 0)} → R2 which is (infinitely)
differentiable, i.e., all partial derivatives of both coordinate functions exist at all
points in the punctured plane, and is bounded but cannot be extended continuously
to the entire plane (much less differentiably).

Riemann’s theorem suggests the following hierarchy of isolated singularities:

Definition 3 (structural definition of isolated singularities; poles) If f : U → C

is complex differentiable and has an isolated singularity at z0 ∈ C and m ∈ N =
{1, 2, 3, . . .}, then we say f has a singularity of order m at z0 if for some r > 0

sup
z∈Br(z0)

|(z − z0)
m−1f(z)| = ∞ but sup

z∈Br(z0)

|(z − z0)
mf(z)| <∞.

In this case, f is also said to have a pole or order m at z0.

Note that in the definition of isolated singularity of order m when we take these
suprema4 it is implicit that only values of z in the domain U of f are under consider-
ation. Thus, we mean the supremum is effectively taken over Br(z0)\{z0}, though we
didn’t write this. It is also assumed here that Br(z0)\{z0} ⊂ U , though we didn’t say
this. The same (implicit) conventions/assumptions will continue to be used below.

We have talked about two kinds of isolated singularities so far: removable singu-
larities and poles. It turns out that these are not all the isolated singularities.

Definition 4 (essential singularity) Given f : U → C a complex differentiable func-
tion defined on an open set U in C, if z0 ∈ C is an isolated singularity of f but z0 is
not removable or a pole, then z0 is said to be an essential singularity of f .

Exercise 5 Show f : C\{0} → C by

f(z) = e1/z

has an essential singularity at z0 = 0.

If f has a singularity of order m ∈ N at z0, then for each j ∈ N

sup
z∈Br(z0)

|(z − z0)
m−1−jf(z)| = ∞ but sup

z∈Br(z0)

|(z − z0)
m+jf(z)| <∞.

4A supremum is a least upper bound if there exists a (finite) least upper bound and is +∞
otherwise. The difference between a supremum and a least upper bound is that a supremum can
take the value +∞ and thus takes its values among the extended real numbers R ∪ {+∞} while a
least upper bound is always a real number.
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Also, the functions Qm : Br(z0)\{z0} → C (for every r > 0 and z0 ∈ C) given by

Qm(z) =
1

(z − z0)m

are examples of functions with an isolated singularity of order m, i.e., a pole. More
generally, if m,n ∈ N and a−m, a−(m−1), . . . , a−1, a0, a1, . . . , an ∈ C and a−m 6= 0, then
f : C\{z0} → C (for every z0 ∈ C) by

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+· · ·+

a−1

z − z0
+a0+a1(z−z0)+· · ·+an(z−z0)

n =
n
∑

j=−m

aj(z−z0)
j

are examples of functions with an isolated singularity of order m at z0.

Exercise 6 (more examples of meromorphic functions) If z1, z2, . . . , zk are distinct
complex numbers, a1, a2, . . . , ak ∈ C\{0}, andm1, m2, . . . , mk ∈ N, then f : C\{z1, z2, . . . , zk} →
C by

f(z) =
k
∑

j=1

aj
(z − zj)mj

has isolated singularities precisely at the points z1, z2, . . . , zj. What is the positive
radius rj, say the largest such radius, on which

f∣
∣

Brj
(zj)

is complex differentiable?

Roughly speaking, a meremorphic function is a complex differentiable function with
only poles as isolated singularities. There are some technicalities involved, but here
is a possible/simple definition:

Definition 5 (meromorphic) Given f : U → C a complex differentiable function on
on open set U ⊂ C, we say f is meromorphic if each z0 in the interior of the closure

of U is either a removable (isolated) singularity or a pole of (some) order m of the
restriction

f∣
∣

U\{z0}

.

In other words, for each z0 ∈ int(U), the point z0 is an isolated singularity of f and
that isolated singularity is not an essential singularity.
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Exercise 7 (moromerphic functions) Just for fun, let’s say a function f : U → C,
complex differentiable on an open set U ⊂ C, is moremerphic if each isolated
singularity z0 ∈ U is either a removable singularity or a pole. What is the difference
between a moremerphic function and a meromorphic function?

Riemann’s theorem gives the following:

Exercise 8 (basic structure theorem for meromorphic functions) If f : Br(z0)\{z0} →
C is complex differentiable and has a pole of orderm at z0, then there exists a complex
differentiable function g : Br(z0) → C with g(z0) 6= 0 and

f = Qm g∣
∣

Br(z0)\{z0}

where as above

Qm(z) =
1

(z − z0)m
.

Hint: Show that if g(z0) = 0, then there exists a complex differentiable function g1
for which g = (z − z0)g1.

Now if you believe5 every complex differentiable function g : U → C is locally
represented by a convergent power series, i.e., if U is open and z0 ∈ U , then there is
some ǫ > 0 for which Bǫ(z0) ⊂ U and for z ∈ Bǫ(z0) there holds

g(z) =

∞
∑

j=0

aj(z − z0)
j

where the sequence of coefficients a1, a2, a3, . . . consists of complex numbers and the
series on the right converges in the sense that

lim
k→∞

k
∑

j=0

aj(z − z0)
j = g(z),

then the structure thorem gives this: Whenever z0 is a pole of orderm as in Exercise 8,
then f has a local representation

f(z) =
1

(z − z0)m

∞
∑

j=0

aj(z − z0)
j =

∞
∑

j=−m

bj(z − z0)
j

5We have not yet shown this.
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where bj = aj+m. That is,

f(z) =
b−m

(z − z0)m
+

b−(m−1)

(z − z0)m−1
+ · · ·+

b−1

z − z0
+

∞
∑

j=0

bj(z − z0)
j . (5)

Furthermore, if you believe the coefficients in the analytic/series representation are
unique with for example

aj =
g(j)(z0)

j!
for j = 0, 1, 2, 3, . . ., (6)

then the construction above defines a unique sequence of numbers and you can identify
one of them as special:

Definition 6 (residue) Given f : U → C complex differentiable on an open set
U ⊂ C with a pole at z0 ∈ C, the residue of f at z0 is defined by

resz0(f) = b−1 where b−1 is given in (5).

In fact,

resz0(f) = lim
z→z0

dm−1

dzm−1

[

1

(m− 1)!
(z − z0)

mf(z)

]

.

You are encouraged to try out my definition and formula for the residue on the
examples of meromorphic functions given above and others you can find yourself.
They might even be correct. If so, then the following may be of interest:

Theorem 2 (the residue theorem) If

1. Γ is a simple closed contour, meaning continuous complex valued functions can
be integrated along this curve,

2. The bounded component V of the complement C\Γ of Γ is compactly contained
in an open set U ⊂ C, i.e., V ⊂ U , and

3. f : U\{z1, z2, . . . , zk} is complex differentiable and meromorphic with poles
precisely at z1, z2, . . . , zk ∈ V ,

then
∫

Γ

f = 2πi

k
∑

j=1

reszj (f).
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