Complex Analysis: Final Harvard University — Fall 1997 — Math 113 9 - 13 January, 1998

where f_n is analytic, and f is not identically equal to zero. (a) Show if f(w) = 0 then we can write $w = \lim z_n$, where $f_n(z_n) = 0$ Answer: it suffices to prove that for each r > 0, f_n has a zero in

1. Let $f_n \to f$ uniformly on compact subsets of an open connected set $\Omega \subset \mathbb{C}$,

for all n sufficiently large.

B(w,r) for all $n\gg 0$. But f|B(w,r) is not identically zero, so this follows by Hurwitz's theorem (Ahlfors p. 178). (b) Does this result hold if we only assume Ω is open? Answer: no; for example, take $\Omega = \mathbb{C} - \mathbb{R}$, and let $f_n = 1$ in the lower half-plane and 1/n in the upper half-plane. 2. Let f(z) = (az+b)/(cz+d) be a Möbius transformation. Show the number

of rational maps $g:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ such that g(g(g(g(z))))) = f(z)is 1, 5 or ∞ . Explain how to determine which alternative holds for a given f.

Answer: Since $\deg(f) = 1 = \deg(g)^5$, g is also a Möbius transformation. After conjugating both sides of the equation, we can assume either: f is the identity f(z) = z; in which case g has infinitely many solutions, e.g. $g(z) = \exp(2\pi i/5)z + a$, for any a; f is hyperbolic, $f(z) = \lambda z$, with λ different from 0 and 1; then

 $g(z) = \lambda^{1/5}z$ gives 5 solutions; or f is parabolic, f(z) = z + 1; in which case g(z) = z + 1/5 is the unique solution. number of solutions is 1 if $(a+d)^2 = 4$, and 5 otherwise. f(z+1) = zf(z).

Normalizing so ad - bc = 1, and assuming f(z) is not the identity, the 3. Find all meromorphic functions $f:\mathbb{C}\to\widehat{\mathbb{C}}$ such that f(1)=1 and Answer: $f(z) = \Gamma(z)h(e^{2\pi iz})$ where h is any arbitrary meromorphic function on \mathbb{C}^* with h(1) = 1. To see this, note that $f(z)/\Gamma(z) = g(z)$ satisfies function for $z \neq 0$. 4. Let $\sum a_n z^n$ be the Taylor series for $\tan(z)$ at z=0.

 $g(z+1)=g(z), ext{ so } h(z)=g(\log z/(2\pi i)) ext{ is a well-defined meromorphic}$ (a) What is the radius of convergence of this power series? Answer: $R = \pi/2$. (b) Give an explicit value of N such that tan(1) and $\sum_{n=0}^{N} a_n$ agree to 1000 decimal places. Justify your answer. Answer: N = 5700, for example, will work. Let r = 1.5 and observe that on the circle S(0,r) we have, setting $w = e^{iz}$, $|\tan(z)| = \frac{|w||w - 1/w|}{|w|^2 + 1!} \le \frac{2e^5}{\cos(1.5)} \le 600.$

(Here $|w^2 + 1| > \cos(1.5)$ because $|z| < 1.5 \implies |\arg(w^2)| \le 1.5 \implies |w^2 + 1| \ge \cos(1.5)$.) By Cauchy's estimate, $|a_n| \le 600r^{-n} \le 1.5$ $600(1.5)^{-n}$, so $\sum_{N} |a_n| < 600r^{-N}/0.5 < 10^{-1000}$ if we take $N > (\log(1200) + 1000 \log(10)) / \log(1.5) = 5696.3...$ 5. Evaluate: $\int_{-\infty}^{\infty} \frac{x^6}{(1+x^4)^2} \, dx.$

principle, so M > 0. Similarly 1/f(z) is analytic in U, so $|1/f(z)| \le 1/M$.

in U and thus |f(z)| is constant. By the open mapping theorem, f must

 $\sum a_n z^n = \frac{1}{z(z-1)(z-2)}$

Answer: $I = 3\pi\sqrt{2}/8$. The integrand has poles at the roots of $x^4 = 1$;

the two roots $x = (i \pm 1)/\sqrt{2}$ lie in the upper half-plane. The residues at

these two poles are $3(i\pm 1)\sqrt{2}/32$, and the integral is $2\pi i$ times the sum

Answer: using partial fractions we find $f(z) = \frac{1}{z(z-1)(z-2)} = \frac{1}{2z} + \frac{1}{1-z} + \frac{1}{2(z-2)};$

7. Compute the Laurent series centered at z = 0 such that

of the residues in \mathbb{H} .

in U.

be constant.

in the region 1 < |z| < 2.

$$f(z) = \dots - \frac{1}{z^4} - \frac{1}{z^3} - \frac{1}{z^2} - \frac{1}{2z}$$
Show for any polynomial $p(z)$ there is a $1/z| \geq 1$.

Answer: $2\pi i = \int_{S^1} (p(z) - 1/z) \, dz$, and a given are value of the absolute value of the

Answer:
$$2\pi i = \int_{S^1} (p(z) - 1/z) dz$$
, and since average value of the absolute value of the integrated Let $U = \{z : 0 < |z| < 1 \text{ and } 0 < \arg(z) < \alpha\}$ a formula for a conformal homeomorphism f Im $(z) > 0\}$ is the upper half-plane.

Answer: $f(z) = -z^{\pi/\alpha} - z^{-\pi/\alpha}$. The map $z \in \mathbb{R}$ and the map $z \mapsto -z - 1/z$ sends $\Delta \cap \mathbb{H}$ to \mathbb{H} .

 $f(z) = \cdots - \frac{1}{z^4} - \frac{1}{z^3} - \frac{1}{z^2} - \frac{1}{2z} - \frac{1}{4} - \frac{z}{2} - \frac{z^2}{16} - \frac{z^3}{22} - \cdots$

expanding each term in a Laurent series valid in the given region, we find 8. Show for any polynomial p(z) there is a z with |z| = 1 such that |p(z)| = 1

and the map $z \mapsto -z - 1/z$ sends $\Delta \cap \mathbb{H}$ to \mathbb{H} . 10. Express

Answer: $2\pi i = \int_{S^1} (p(z) - 1/z) dz$, and since the length of S^1 is 2π , the average value of the absolute value of the integrand must be at least one. 9. Let $U = \{z : 0 < |z| < 1 \text{ and } 0 < \arg(z) < \alpha\}$, where $0 < \alpha < 2\pi$. Find a formula for a conformal homeomorphism $f:U\to \mathbb{H}$, where $\mathbb{H}=\{z:$ Answer: $f(z) = -z^{\pi/\alpha} - z^{-\pi/\alpha}$. The map $z \mapsto z^{\pi/\alpha}$ sends U to $\Delta \cap \mathbb{H}$,

 $f(z) = \sum_{n=0}^{\infty} \frac{1}{(z-n)^4}$

in closed form, using trigonometric functions. Answer: We know from Ahlfors that $\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n=0}^{\infty} \frac{1}{(z-n)^2};$ differentiating both sides twice, we find $f(z) = \sum_{n=0}^{\infty} \frac{1}{(z-n)^4} = \frac{\pi^4}{\sin^4(\pi z)} - \frac{2\pi^4}{3\sin^2(\pi z)}$

(This formula also shows $\sum_{1}^{\infty} 1/n^4 = \pi^4/90$, by comparing the constant

terms in the Laurent expansions on both sides.)