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Let us begin with a definition:

Definition 1 (Cauchy domain) A bounded open subset Ω ⊂ C is a Cauchy domain
if Γ = ∂Ω is a piecewise C1 simple closed curve.

In order to understand this definition naturally requires that one know what
piecewise C1 means. Also, implicit in the definition is the use of the Jordan curve
theorem. I will not discuss those topics here. The basic result under discussion here
is the following:

Theorem 1 (Cauchy’s theorem) If U is an open subset of C and f : U → C is a
complex differentiable function, then

∫

Γ

f = 0 for every Cauchy domain Ω ⊂ U with Γ = ∂Ω ⊂ U . (1)

1 Proof when f ′ is continuous

Recall Green’s theorem from multivariable calculus:

Theorem 2 (Green’s theorem) If

(i) Ω is a bounded open subset of R2,

(ii) ∂Ω a piecewise C1 simple closed curve,

(iii) U is an open set in R2, and

(iv) v : U → R2 is a C1 vector field on U ,

1



then
∫

∂Ω

v · T =

∫

Ω

(

∂v2
∂x

− ∂v1
∂y

)

.

where v = (v1, v2).

I will mention that condition (iv) v ∈ C1(U → R2) means the first partial derivatives
of the component functions v1, v2 : U → R are continuous, i.e.,

∂v1
∂x

,
∂v1
∂y

,
∂v2
∂x

,
∂v2
∂y

∈ C0(U).

Exercise 1 Give a simple proof of Cauchy’s theorem using Green’s theorem under
the additional assumption that f ′ is continuous. Note that f = u + iv satisfies f ′ is
continuous on U if and only if the (first) partial derivatives of the real and imaginary
parts as functions of the real variables x and y where z = x+ iy satisfy

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
∈ C0(U).

2 Another “special” case

If f ′ is continuous, and the other hypotheses of Cauchy’s theorem hold, then the
conclusion (1) can be obtained using Green’s theorem about circulation integrals for
real vector fields. Another situation in which the assertion

∫

Γ

f = 0

of Cauchy’s theorem may be obtained is when there is a global complex antideriva-
tive g : U → C, that is a complex differentiable function for which g′ = f . In this
case a version of the fundamental theorem of calculus gives the result: Parameterizing
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Γ by α : [a, b] → Γ with α injective on [a, b) and α(b) = α(a), we can write

∫

Γ

f =

∫ b

a

f ◦ α(t)α′(t) dt

=

∫ b

a

g′ ◦ α(t)α′(t) dt

=

∫ b

a

d

dt
[g ◦ α(t)] dt (2)

= g ◦ α∣
∣

b

t=a

(3)

= g(α(b))− g(α(a))

= 0.

Exercise 2 Prove a version of the chain rule for real derivatives of complex valued
compositions g ◦ α of functions α : [a, b] → U and g : U → C justifying (2).

Exercise 3 Prove a version of the fundamental theorem of calculus for real integrals
of continuous complex valued functions φ : [a, b] → C justifying (3).

We will use this special case of Cauchy’s theorem below.

3 Gorsat domains

The way I learned it, Goursat’s lemma is the following:

Lemma 1 If R is a rectangular domain in C, i.e., there is a (center) point z0 ∈ C

and width and height values a, b > 0 such that

R = Ra,b(z0) =

{

z ∈ C : |Re(z)− Re(z0)| <
a

2
, | Im(z)− Im(z0)| <

b

2
,

}

,

then
∫

∂R

f = 0 for every complex differentiable function f : U → C

where U is an open subset of C with R ⊂ U .
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Note that this is a special case of Cauchy’s theorem. I will present a proof for the
special case a = b and z0 = 0.

Proof: Let us assume by way of contradiction that

∫

∂R

f 6= 0.

This means there is some ǫ > 0 for which
∣

∣

∣

∣

∫

∂R

f

∣

∣

∣

∣

≥ ǫ. (4)

Notice that if R = Ra,a(0) = {z ∈ C : |Re(z)|, | Im(z)| < a/2}, then there are four
square subdomains

R1 = Ra/2,a/2(a/2 + ia/2) = {z ∈ C : |Re(z)− a/2|, | Im(z)− a/2| < a/2}
R2 = Ra/2,a/2(−a/2 + ia/2) = {z ∈ C : |Re(z) + a/2|, | Im(z)− a/2| < a/2}
R3 = Ra/2,a/2(−a/2− ia/2) = {z ∈ C : |Re(z) + a/2|, | Im(z) + a/2| < a/2}
R4 = Ra/2,a/2(a/2− ia/2) = {z ∈ C : |Re(z)− a/2|, | Im(z) + a/2| < a/2}

for which
∫

∂R

f =
4

∑

j=1

∫

∂Rj

f.

If we assume
∣

∣

∣

∣

∣

∫

∂Rj

f

∣

∣

∣

∣

∣

<
ǫ

4
for j = 1, 2, 3, 4,

then
∣

∣

∣

∣

∫

∂R

f

∣

∣

∣

∣

≤
4

∑

j=1

∣

∣

∣

∣

∣

∫

∂Rj

f

∣

∣

∣

∣

∣

< ǫ,

which constradicts (4). We conclude one of the subdomains R1,j1 ∈ {R1, R2, R3, R4}
must satisfy

∣

∣

∣

∣

∣

∫

∂R1,j1

f

∣

∣

∣

∣

∣

≥ ǫ

4
.
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A similar argument applies to the square domain R1,j1 giving a subdomain R2,j2 ,
which is also a square subdomain of both R and R1,j1 satisfying

∣

∣

∣

∣

∣

∫

∂R2,j2

f

∣

∣

∣

∣

∣

≥ ǫ

42
.

Continuing in this way, we obtain a sequence of nested square domains

R1,j1 ⊃ R2,j2 ⊃ · · · ⊃ Rn,jn ⊃ · · ·

where Rn,jn has sidelength a/2n and satisfies
∣

∣

∣

∣

∣

∫

∂Rn,jn

f

∣

∣

∣

∣

∣

≥ ǫ

4n
. (5)

Furthermore, the centers z0,n of these square domains form a sequence which converges
to a point z1 ∈ C satisfying

z1 ∈ ∩∞
n=1Rn,jn.

Note that z1 ∈ U , and therefore, we can find some δ > 0 for which η : Bδ(z1) → C by

η(z) = f(z)− f(z1)− f ′(z1)(z − z1)

is a continuous function satisfying

lim
z→z1

η(z)

z − z1
= 0. (6)

When n is large enough, the entire square domain Rn,jn and its boundary will lie
within Bδ(z1). This means that in the integral

∫

∂Rn,jn

f =

∫

z∈∂Rn,jn

f(z)

we can write f(z) = f(z1) + f ′(z1)(z − z1) + η(z). Therefore,
∫

∂Rn,jn

f = f ′(z1)

∫

∂Rn,jn

1 + f ′(z1)

∫

z∈∂Rn,jn

(z − z1) +

∫

∂Rn,jn

η.

Let’s take each of the integrals on the right separately. First of all, there is an entire
function g1(z) = z for which g′1(z) ≡ 1. This means

∫

∂Rn,jn

1 = 0.
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Next, there is an entire function g2(z) = (z − z1)
2/2 for which g′2(z) = (z − z1).

Therefore,
∫

z∈∂Rn,jn

(z − z1) = 0

for the same reason. Thus, we only need to consider the third integral for which
∫

∂Rn,jn

f =

∫

∂Rn,jn

η.

We estimate:
∣

∣

∣

∣

∣

∫

∂Rn,jn

η

∣

∣

∣

∣

∣

≤ 4a

2n
max

z∈∂Rn,jn

|η(z)|

where 4a/2n is the perimeter of the square ∂Rn,jn . On the other hand, for any ρ > 0,
we can take n large enough so that

|z − z1| ≤
a

2n+1

√
2 for z ∈ ∂Rn,jn

and (consequently due to (6))

|η(z)| ≤ ρ |z − z1| <
a
√
2

2n+1
ρ.

Therefore, for all such large enough n

max
z∈∂Rn,jn

|η(z)| ≤ a
√
2

2n+1
ρ

and
∣

∣

∣

∣

∣

∫

∂Rn,jn

η

∣

∣

∣

∣

∣

≤ 4a

2n
a
√
2

2n+1
ρ =

2a2
√
2

22n
ρ.

Putting this estimate together with (5) we have

ǫ

4n
≤

∣

∣

∣

∣

∣

∫

∂Rn,jn

η

∣

∣

∣

∣

∣

≤ 2a2
√
2

22n
ρ

and
ǫ ≤ 2a2

√
2 ρ

where ǫ > 0 and a > 0 are fixed and ρ > 0 is arbitrary. This is a contradiction, and
this contradiction means our assumption (4) cannot be true. It must be the case that

∫

∂R

f = 0. �
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Exercise 4 Prove Goursat’s lemma (for a general rectangle).

Essentially the same argument applies to any Goursat domain:

Definition 2 (Goursat domain; McCuan 2018) Given k ∈ N\{1}, an open subset
Ω ⊂ C is a Goursat domain of order k if ∂Ω is a piecewise C1 simple closed
curve, and there exist k subdomains Ω1,Ω2, . . . ,Ωk of Ω for which

(i) Each Ωj is geometrically similar to Ω for j = 1, 2, . . . , k, i.e., Ωj has the form

Ωj = {ρ(z) : z ∈ Ω}

where ρ : C → C is a composition of a dilation (complex scaling) and a trans-
lation.

(ii) Ωj is geometrically congruent to Ωℓ for all ℓ and j, and

(iii) area(Ω) =
∑k

j=1
area(Ωj) = k area(Ωℓ) for each ℓ = 1, 2, . . . , k.

Exercise 5 Prove a version of Goursat’s lemma which applies to any Goursat do-
main.

Exercise 6 Give examples of Goursat domains of all orders. Find all the “interest-
ing” Goursat domains you can find.

Exercise 7 (presently considered very difficult; see Geometria Dedicata 82, 325–344
(2000)) Classify all Goursat domains of order k = 2.

Exercise 8 (open problem) Give an “easy” proof of the classification of all Goursat
domains of order k = 2.

Note: The study of Goursat domains as suggested above may be considered what is
called in mathematics a “tiling problem.” As a tiling problem, the subdomains Ωj

for j = 1, 2, . . . , k are said to “tile” the domain Ω. Among tiling problems, this kind
of problem is said to involve repeated or replicated tiles. As a result, a reasonable
name for such a tiling might be a “repeating tiling” or a “replication tiling,” or even
a “rep-tile.” It seems, however, that the preponderance of mathematicians interested
in these kinds of tiling problems have a predilection for cutesy names; in the literature
such a tiling is referred to as a reptile.
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4 Cauchy’s theorem from Goursat’s lemma

As an immediate consequence of Exercise 5 we obtain the following special case of
Cauchy’s theorem:

Theorem 3 (Cauchy’s theorem for Goursat domains) If U is an open subset of C
and f : U → C is a complex differentiable function, then

∫

Γ

f = 0 for every Goursat domain Ω ⊂ U with Γ = ∂Ω ⊂ U . (7)

Our objective from this point is somewhat more modest than that suggested by
Brown and Churchill. An explanation of why this is the case is given in the next
section. In any case, our objective is, first of all, to provide an approach to obtain
various Cauchy theorems having basically the same form as Theorem 1 and Thereom 3
but applying to various classes of domains Ω. Here is a simple example of the kind
of result we can obtain:

Theorem 4 (Cauchy’s theorem for some semicircular domains) Let U be an open
subset of C and f : U → C a complex differentiable function. For z0 ∈ C and r > 0,
consider a semicircular domain Ω ⊂ U having the form

Ω = {z ∈ C : |z − z0| < r and Im(z) > Im(z0)}.

If Γ = ∂Ω ⊂ U , then
∫

Γ

f = 0. (8)

Our first observation is that every triangular domain is a Goursat domain:1

Exercise 9 If Ω is an open subset of C and ∂Ω is a triangle, then Ω is a Goursat
domain of order k = 4.

In particular, Theorem 3 applies to triangular domains. Now, let us take a particular
special case of a semicircular domain (for simplicity):

Ω = {z ∈ C : |z| < 1, Re(z) > 0}.

We are assuming Ω ⊂ U where f : U → R is complex differentiable.

1This approach may be found in the text of Stein and Shakarchi.
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Because U is open, for each point a ∈ R with |a| ≤ 1, there is some ǫ > 0 so that
the square domain

Qx = {z ∈ C : |Re(z)− x| < ǫx and | Im(z)| < ǫx}

with center at x satisfies Qx ⊂ U . Thus,

{Qx}−1≤x≤1 is a covering of the compact set K = {x ∈ R : |x| ≤ 1}.

A compact set in C is a set which is closed and bounded. For our immediate
purposes, it is important to know that if a compact set is “covered” by open sets, i.e.,
is the subset of the union of these open sets, then only finitely many of the open sets
are needed to cover the compact set. Thus, only finitely many of the square domains
still cover K. Let these square domains be centered at x1, x2, . . . , xk and have “radii”
ǫx1

, ǫx2
, . . . , ǫxk

. Let
ǫ = min{ǫx1

, ǫx2
, . . . , ǫxk

}.
Notice then that the line segment L = {x− iǫ : −1 ≤ x ≤ 1} and the closed rectangle

R = {x− ti : −1 ≤ x ≤ 1, −ǫ ≤ t ≤ 0}

are both entirely contained in U . In particular, for each z ∈ Ω, there is a unique path
Z given by the concatenation2 of Zh and Zv where Zh is parameterized by ζh with

ζh(t) = −1− ǫi+ tRe(z), for 0 ≤ t ≤ 1

and Zv is parameterized by ζv with

ζv(t) = −1 + Re(z)− (1− t)ǫi+ t Im(z), for 0 ≤ t ≤ 1.

Also, the path Z is entirely within U . Thus, we can define a function g : Ω → C by

g(z) =

∫

Z

f.

We need to go a little bit farther than this, but let us pause to consider the value of
g on the semicircular open region Ω. The basic claim is that g : Ω → C is complex
differentiable with g′ = f , that is, g is a complex antiderivative for f on Ω.

2We are departing here slightly from the convention that a curve is parameterized on a single

interval, but hopefully the meaning is clear: The curve Z consists of a horizontal segment along the

bottom boundary segment of ∂Ω and a vertical segment terminating at z ∈ Ω.
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If z ∈ Ω and we take h + ik ∈ C with h, k ∈ R and |h + ik| small enough, then
z + h+ ik will also be in Ω and we can consider the difference quotient

g(z + h+ ik)− g(z)

h + ik
.

Let us consider some special cases: If h > 0 and k = 0, then

g(z + h)− g(z) =

∫

A

f +

∫

I

f −
∫

J

f (9)

where A, I, and J are segments as follows:

A : γ(t) = Re(z)− ǫi+ th for 0 ≤ t ≤ 1,

I : γ(t) = Re(z) + h− (1− t)ǫi+ t Im(z)i for 0 ≤ t ≤ 1,

J : γ(t) = Re(z)− (1− t)ǫi+ t Im(z)i for 0 ≤ t ≤ 1.

These are three sides of a rectangle (which is the boundary of a Goursat domain of
order four in U). Specifically, if we take

B : z + th for 0 ≤ t ≤ 1,

then
∫

A

f +

∫

I

f −
∫

B

f −
∫

J

f = 0,

or

g(zh)− g(z) =

∫

B

f =

∫ h

0

f(z + t) dt.

Returning to the full difference quotient we have

lim
hց0

g(z + h)− g(z)

h
= lim

hց0

1

h

∫ h

0

f(z + t) dt = f(z)

because f is continuous and the limiting quantity is the average of f on the segment
B. Very explicitly using the basic estimates for complex integrals,

∣

∣

∣

∣

1

h

∫ h

0

f(z + t) dt− f(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h

∫ h

0

[f(z + t)− f(z)] dt

∣

∣

∣

∣

≤ max
0≤t≤h

|f(z + h)− f(z)|.
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Another special case: h, k > 0. In this case, (9) still holds with

A : γ(t) = Re(z)− ǫi+ th for 0 ≤ t ≤ 1,

I : γ(t) = Re(z) + h− (1− t)ǫi+ t[Im(z) + k]i for 0 ≤ t ≤ 1,

J : γ(t) = Re(z)− (1− t)ǫi+ t Im(z)i for 0 ≤ t ≤ 1.

Notice that only the segment I has changed. Furthermore, we can write I as the
concatenation of I1 and I2 where

I1 : γ(t) = Re(z) + h− (1− t)ǫi+ t Im(z)i for 0 ≤ t ≤ 1,

I2 : γ(t) = z + h + tki for 0 ≤ t ≤ 1.

Using the same segment B from the case above, we see A, I1, B, and J are segments
along the boundary of a rectangle in U with

∫

A

f +

∫

I1

f −
∫

B

f −
∫

J

f = 0.

Introducing the segment C connecting z to z + h+ ik, we see also that B and I2 are
two sides of a triangular domain (which is a Goursat domain of order 4) in U with

∫

B

f +

∫

I2

f −
∫

C

f = 0.

Combining these observations,

g(z + h+ ik)− g(z) =

∫

A

f +

∫

I1

f +

∫

I2

f −
∫

J

f =

∫

C

f,

and

lim
h,kց0

g(z + h)− g(z)

h+ ik
= lim

h,kց0

1

h+ ik

∫

C

f

= lim
h,kց0

1

h+ ik

∫

1

0

f(z + t(h + ik)) (h+ ik)dt

= f(z).

Exercise 10 Show carefully that for z ∈ Ω

g′(z) = lim
h+ik→0

g(z + h + ik)− g(z)

h+ ik
= f(z).
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In view of Exercise 10 we know that whenever Γ is a simple closed curve within Ω,
then

∫

Γ

f = 0

by the second special case of Cauchy’s theorem in which we have a complex primitive.
The little bit more we need is to apply this argument to Γ = ∂Ω. Let’s see if

we can get that. As we had for each point in K = R ∩ ∂Ω, there is for each point
z ∈ P = ∂B1(0) ∩ {w : Im(w) ≥ 0} an open polar rectangle

Rz = {teiθ : |t− 1| < δz, |θ − Arg(z)| < δz},

with “center” z and “radius” δz, satisfying Rz ⊂ U . Since P is also compact, we can
take finitely many points z1, z2, . . . , zm ∈ P and

δ = min{δz1 , δz2, . . . , δzm}

where

P ⊂
m
⋃

j=1

Rzj .

By taking ǫ and δ smaller if necessary, we can ensure both the square and the polar
rectangles centered at z = −1 and z = +1 with radius ρ = min{ǫ, δ} are both in U .
It follows that the (possibly new) horizontal segment

Lρ = {x− ρi : |x| < 1 + ρ}

and the entire semicircular domain

Σ = {z ∈ C : |z − ρi| < 1 + ρ, Im(z) > −ρ}

are entirely contained in U . Letting Z denote, for each z ∈ Σ the concatenation of
a horizontal segment connecting −1 − ρ − iρ to Re(z) − iρ followed by the vertical
segment connecting Re(z)− iρ to z, we obtain g : Σ → C by

g(z) =

∫

Z

f

which is complex differentiable on Σ, an open set containing Ω, and is a complex
antiderivative of f : g′ = f . �
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It would be nice to have a general result for domains like the semicircular domain
above and the Stein domains of type 1 defined below giving a little bit larger open
set Σ with

Ω ⊂ Σ ⊂ Σ ⊂ U

and such that Σ also preserves the geometry of Ω to the extent that an antiderivative
may be defined on some open set containing Ω using concatenated segments from some
“lower left” point as above. I have not thought carefully about how to formulate or
prove such a result, but I will give you a chance to do that:

Definition 3 Given bounded open sets U and Ω in C with ∂Ω a simple closed curve
satisfying

∂Ω ⊂ Ω ⊂ U,

we say Ω is a Stein domain of type 1 if for some y0, a, b ∈ R with a < b the
horizontal line segment L = {x+ y0i : a ≤ x ≤ b} satisfies L ⊂ U , and for each z ∈ Ω
the segment

V = {Re(z) + (1− t)y0i+ t Im(z) : 0 ≤ t ≤ 1}
satisfies V ⊂ U .

Exercise 11 State and prove a version of Cauchy’s theorem which applies to every
Stein domain of type 1.

Stein generalizes this argument to apply to, for example, a disk Br(z0) which
is not a Stein domain of type 1. The generalization proceeds as follows: Given
z ∈ Br(z0), there is a unique path Γ connecting z0 to z which is the concatenation of
a horizontal segment followed by a vertical segment. There is some ǫ > 0 for which
Bǫ(Ω) = Br+ǫ(z0) ⊂ U when as usual f : U → C, and the function g : Br+ǫ(z0) → C

by

g(z) =

∫

Γ

f

is a complex differentiable antiderivative for f on Bǫ(Ω). Since the horizontal and
vertical segments in this case are not always “to the right” and “up” respectively
in this situation, consideration of the difference quotient falls also into several cases
which is a little tedious, but it works in the end.

Definition 4 Given bounded open sets U and Ω in C with ∂Ω a simple closed curve
satisfying

∂Ω ⊂ Ω ⊂ U,
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we say Ω is a Stein domain of type 2 if for some z0 ∈ Ω the horizontal line segments
L = {z0+t[Re(z)−Re(z0)] : 0 ≤ t ≤ 1} and V = {Re(z)+i Im(z0)+t[Im(z)−Im(z0)] :
0 ≤ t ≤ 1} satisfy L, V ⊂ U .

Exercise 12 State and prove a version of Cauchy’s theorem which applies to every
Stein domain of type 2.

There should be a collection of Stein domains of type 3 which are essentially
what Stein calls “simple domains” or “elementary domains” or something like that.
I started to formulate and prove a Cauchy theorem for such domains, but I never did
quite work out the details. I don’t feel too bad because Stein did not seem to work
out the details either. There are only so many hours in a life.

5 Brown and Churchill’s proof

It seems to me there is probably something of an error in the proof of Cauchy’s
theorem given in Brown and Churchill, though the basic assertion(s) may be correct.
In order to describe one specific point that troubles me, let’s specialize the proof to
the special case of, for example, a square domain:

Ω = {z ∈ C : |Re(z)|, | Im(z)| < 1}.

They essentially seem to be following the original proof of Goursat and claim some-
thing like this:

Lemma 2 (Goursat’s lemma) For any ǫ > 0, there is a partition of Ω into finitely
many subsquares Q1, Q2, . . . , Qk such that there exists, in each subsqure Qj for j =
1, 2, . . . , k, a point ζj such that

|f(z)− f(ζj)− f ′(ζj)(z − ζj)| ≤ ǫ|z − ζj|

for every z ∈ Qj .

Perhaps the simplest thing to say is that I don’t see how to prove this result, and I
don’t think Brown and Churchill (and probably also Goursat) have a correct proof.

Here is an interesting story: There is a famous result called the Cantor-Bernstein
theorem. Bernstein was very interested in the result and went around giving lectures
on it and popularizing it. Bernstein had published a “proof” of the result and was
presenting that “proof” in his lectures. Bernstein’s proof was incorrect, and as far as

14



I can tell, Bernstein died before a correct proof was given. I think maybe he went to
his grave thinking he had a correct proof. In any case, he didn’t give a correct proof,
but he got his name on the result anyway.

It seems that maybe something similar is the case with Goursat’s theorem relaxing
the requirement that f ′ is continuous in Cauchy’s integral theorem. Goursat was very
interested in this result. He published a “proof” of the result, and he got his name
on the result. But I’m not entirely sure he had a correct proof of the result.

It seems like E.H. Moore tried to clean this up and give a correct proof, which is
essentially Stein’s proof that I’ve presented above, without using Goursat’s lemma.
It may be a little disappointing that we have not obtained Cauchy’s theorem in the
generality stated at the very beginning (general simple closed curves) but only for
domains with some special geometry like that of the semicircular domain or like that
of the disk, or maybe for Stein domains of type 3, whatever those are. On the other
hand, Moore doesn’t really get that generality either. If you look closely, he has
some pretty complicated conditions on the curves to which he claims his argument
will apply. In practice, one would have to take a specific domain (like a semicircular
domain, a disk, or a Stein domain of type 3 or whatever) and check those complicated
conditions.

My conclusion is that what we’ve got is, on the one hand, pretty good, and on
the other hand what we’ve got may not be too much weaker than the best that has
actually been carefully proved, e.g., by E.H. Moore.

One final thing to note is that I’m pretty sure Brown and Churchill restrict to
piecewise C1 curves. (This is not a restriction used by Moore.) It is an interesting
fact, that if you start partitioning a piecewise C1 curve using coordinate squares
or rectangles, then you can quite easily end up with a (sub)region whose boundary
is not piecewise C1 anymore. Roughly speaking, Moore uses rectifiability,3 and it’s
pretty clear that cutting up a domain with rectifiable boundary using rectangles leads
to domains with rectifiable boundaries, but this is definitely a detail that should be
checked.

3Moore also needs to be able to integrate on these curves, and I guess rectifiability of a continuous

curve is enough, but one needs a better notion of the complex integral than the one we have for

that. We basically need something like piecewise C1 for our complex integrals.
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