Assignment 8: Elementary functions Chapter 3 of BC Due Wednesday, March 15, 2023

John McCuan

February 18, 2023

Problem 1 (complex exponential) Draw the following subsets of the complex z-plane and their images under the exponential function in the specified complex w-plane/sheet. Use colors.

- (a) $\Sigma_0 = \{x + iy : 0 \le y < 2\pi\}$ in $\mathcal{L}_0 = \{w \in \mathbb{C} \setminus \{0\} : 0 \le \arg(w) < 2\pi\}.$
- (b) $\{iy: 2\pi \le y < 4\pi\}$ in $\mathcal{L}_1 = \{w \in \mathbb{C} \setminus \{0\} : 2\pi \le \arg(w) < 4\pi\}.$
- (c) $\{2 + iy : 2\pi \leq y < 5\pi\}$ in $\mathcal{L}_1 \cup \mathcal{L}_2$ where $\mathcal{L}_1 = \{w \in \mathbb{C} \setminus \{0\} : 2\pi \leq \arg(w) < 4\pi\}$ and $\mathcal{L}_2 = \{w \in \mathbb{C} \setminus \{0\} : 4\pi \leq \arg(w) < 6\pi\}.$
- (c) $\{-\ln(2) + iy : -5\pi \le y < \pi\}$ in the appropriate sheets of the Riemann surface \mathcal{L} for the complex exponential (which you should define).
- (10 presentation points)

Problem 2 (complex logarithm) Explain why

$$\log_0(w) = \ln|w| + i \tan^{-1}\left(\frac{\operatorname{Im}(w)}{\operatorname{Re}(w)}\right) \tag{1}$$

for $w \in \{\zeta \in \mathcal{L}_0 : \operatorname{Re}(\zeta), \operatorname{Im}(\zeta) > 0\}$ where \mathcal{L}_0 is given in Problem 1 above and $\tan^{-1} : \mathbb{R} \to (-\pi/2, \pi/2)$ denotes the real (principal) arctangent. (10 presentation points)

Problem 3 (complex logarithm) Find generalized versions of the formula (1) giving the real and imaginary parts of $\log_0(w)$ in terms of the real (principle) arctangent for all $w \in \mathcal{L}_0$. (10 presentation points)

Problem 4 (complex logarithm) In view of the formula (1) what interesting thing can you assert/say about the function

$$v(x,y) = \ln\left(\frac{y}{x}\right)?$$

I'm leaving it to you to properly specify the domain of the function v. (10 presentation points)

Problem 5 (complex exponential/logarithm) Write down the set description of the *j*-th sheet of the Riemann surface \mathcal{L}_j associated with the complex exponential. (10 presentation points)

Problem 6 (Exercise 3.30.1 in BC) Calculate

$$\exp\left(\frac{2+\pi i}{4}\right).$$

Problem 7 (Exercise 3.30.3 in BC) Show the composition $f(z) = \exp(\overline{z})$ is nowhere complex differentiable. Hint: Cauchy-Riemann equations. (10 presentation points)

Problem 8 (Exercise 3.1 in my notes and Exercise 3.30.4 in BC)

- (a) Show the complex exponential function is entire.
- (b) Compute the derivative of $\exp(z)$.
- (c) Show the composition $f(z) = \exp(z^2)$ is entire and compute the derivative of f.
- (10 presentation points)

Problem 9 (Exercises 3.30.5 in BC)

(a) With z = x + iy express $|\exp(2z + i)|$ and $|\exp(iz^2)|$ as functions of x and y.

⁽¹⁰ presentation points)

(b) Show

$$\left| e^{2z+i} + e^{iz^2} \right| \le e^{2\operatorname{Re} z} + e^{-2\operatorname{Re}(z)\operatorname{Im}(z)}.$$
 (2)

- (c) Characterize the condition of equality in (2).
- (10 presentation points)

Problem 10 (Exercise 3.30.6 in BC)

(a) Show

$$\left|e^{z^2}\right| \le e^{|z|^2}.\tag{3}$$

- (b) Characterize the condition of equality in (3).
- (10 presentation points)