Assignment 4: Functions Due Wednesday, February 15, 2023

John McCuan

January 21, 2023

Problem 1 (Exercises 2.2-3 in my notes) Show that a function $f: X \to Y$ is one-to-one and onto if and only if there exists a function $g: Y \to X$ satisfying

$$g \circ f = \mathrm{id}_X$$
 and $f \circ g = \mathrm{id}_Y$.

(10 presentation points)

Problem 2 (Exercise 2.4 in my notes) Consider $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by

$$f(z) = \frac{1}{z}.$$

- (a) Writing z = x + iy find the real and imaginary $u : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ and $v : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ parts of f.
- (b) Compute the partial derivatives:

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$.

(c) Compute the second homogeneous partial derivatives:

$$\frac{\partial^2 u}{\partial x^2}$$
, $\frac{\partial^2 u}{\partial y^2}$, $\frac{\partial^2 v}{\partial x^2}$, and $\frac{\partial^2 v}{\partial y^2}$.

(10 presentation points)

Problem 3 (Exercise 2.4 in my notes) Consider $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ by

$$f(z) = \frac{1}{z}$$

as in Problem 2 above.

- (a) Draw the graphs of u = Re(f) and v = Im(f).
- (b) Draw a mapping picture for f based on the **orthogonal net** of circles and lines in the domain $\mathbb{C}\setminus\{0\}$ determined by

$$\{re^{i\theta}: \theta \in \mathbb{R}\}$$
 and $\{re^{i\theta}: r > 0\}.$

(10 presentation points)

Problem 4 (Example 2.13.5 in BC) Brown and Churchill assert that $f: \mathbb{C} \to \mathbb{C}$ by

$$f(z) = \sqrt{|z|}e^{i\operatorname{Arg}(z)/2}$$

where $-\pi < \operatorname{Arg}(z) \leq \pi$ is a well-defined single valued function on all of \mathbb{C} . This is correct, but this function is not (even) **continuous**. Explain why. (10 presentation points)

Problem 5 (Exercise 2.14.5 in BC) Consider the complex polynomial function determined by $f(z) = z^2$ and the (co)domain

$$V = \{u + iv : 1 < u < 2 \text{ and } 1 < v < 2\} \subset \mathbb{C}.$$

Find an open set $U \subset \mathbb{C}$ such that the restriction

$$f_{\mid_{U}}:U\to V$$

is a bijection. (10 presentation points)

Problem 6 Find polynomial functions $P : \mathbb{C} \to \mathbb{C}$ which correspond to the following bijections of the (complex) plane:

- (a) Translation to the right by c > 0.
- (b) Rotation clockwise by an angle $\theta > 0$.

Show that if $P: \mathbb{C} \to \mathbb{C}$ given by

$$P(z) = \sum_{j=1}^{k} a_j z^j$$

is a polynomial function with $k \geq 2$ and $a_k \neq 0$, then P does not give a bijection of \mathbb{C} . (10 presentation points)

Problem 7 (complex squares) Draw the following subsets of \mathbb{C} :

- (a) $\{z^2 \in B_1(0) : \pi/6 < \arg(z) < 5\pi/6\}.$
- (b) $\{z^2 \in B_1(0) : -\pi/3 < \arg(z) < \pi/3\}.$

(10 presentation points)

Problem 8 (complex squares) Let $x_0 > 0$ and consider

$$U = \{x_0 + iy \in \mathbb{C} : y \in \mathbb{R}\}\$$

and let $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = z^2$.

- (a) Draw f(U).
- (b) Express u = Re(f) on ∂U as a function of y.
- (c) Express u = Re(f) on $\partial f(U)$ as a function of v = Im(f).
- (d) Identify $\partial f(U)$ as a well-known curve.
- (e) Describe $\partial f(U)$ as a function of x_0 .
- (10 presentation points)

Problem 9 (Complex square roots) Let $g: \{w \in \mathbb{C}: -\pi < \arg(w) \leq \pi\}$ be a branch of \sqrt{w} and for $u_0 > 0$ fixed consider

$$V = \{ u_0 + iv \in \mathbb{C} : v \in \mathbb{R} \}.$$

- (a) Draw g(V).
- (b) Express x = Re(g) as a function of y = Im(g) on $\partial g(V)$.
- (c) Identify $\partial g(V)$ as a well-known curve.
- (e) Describe $\partial g(V)$ as a function of u_0 .

(10 presentation points)

Problem 10 Consider the function $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = e^z$ using the definition

$$e^z = e^{\operatorname{Re}(z)} [\cos \operatorname{Im}(z) + i \sin \operatorname{Im}(z)].$$

Find a connected set $A \subset \mathbb{C}$ such that $f(A) = \mathbb{C} \setminus \{0\}$. (10 presentation points)