Assignment 12: Complex Integration Chapter 4 of BC Due Wednesday, April 12, 2023

John McCuan

February 26, 2023

Problem 1 (Exercise 4.42.2 in BC) Compute

$$\int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt.$$

(10 presentation points)

Problem 2 (Exercise 4.2 in my notes and Exercise 4.43.2 in BC) Parameterize $\partial B_r(z_0)$ by argument θ based at z_0 and reparameterize by arclength. (10 presentation points)

Problem 3 (Exercise 4.3 in my notes and Exercise 4.43.3 in BC) Parameterize the straight line segment from $z_0 = x_0 + iy_0$ to $z_1 = x_1 + iy_1$ with $\alpha(j) = z_j$ for j = 0, 1. Reparameterize by arclength. (10 presentation points)

Problem 4 (Exercise 3.43.4 in BC) State and prove a chain rule for the composition $\alpha \circ \phi$ where $\alpha : [a, b] \to \mathbb{C}$ parameterizes a curve and $\phi \in C^1[c, d]$ is a change of variable.

(10 presentation points)

Problem 5 (Exercise 3.43.5 in BC) State and prove a chain rule for the composition $f \circ \alpha$ where $\alpha : [a, b] \to U$ parameterizes a curve in an open set $U \subset \mathbb{C}$ and $f : U \to \mathbb{C}$ is complex differentiable.

(10 presentation points)

Problem 6 (Exercise 4.6 in my notes) Compute

$$\int_{\Gamma} \sqrt{w}$$

where $\gamma : [0, \pi] \to \mathcal{R}$ by $\gamma(t) = 3e^{it} \in \mathcal{R}$ and $\mathcal{R} = \mathcal{R}_0 \cup \mathcal{R}_1$ is the two sheeted Riemann surface for z^2 .

(10 presentation points)

Problem 7 (4.46.1 in BC) Compute the complex integral

$$\int_{\Gamma} f$$

where $\gamma: [0, \pi] \to \mathbb{C}$ by $\gamma(t) = 2e^{it}$ and

$$f(z) = \frac{z+2}{2}.$$

(10 presentation points)

Problem 8 (4.46.3 in BC) Compute

$$\int_{\Gamma} \pi e^{\pi \overline{z}}$$

where

$$\Gamma = \partial \{ z \in \mathbb{C} : 0 < \operatorname{Re} z, \operatorname{Im} z < 1 \}.$$

(10 presentation points)

Problem 9 (4.46.6 in BC) Compute the complex integral

$$\int_{\Gamma} f$$

where $\gamma : [0, \pi] \to \mathbb{C}$ by $\gamma(t) = e^{it}$ and

$$f(z) = z^i = \exp(i\log z)$$

is the principal branch, i.e., Brown and Churchill's principal branch, of z^i determined by taking the branch cut for log along the negative real axis and $-\pi < \arg z < \pi$. (10 presentation points) **Problem 10** (Section 47 in BC) Show that if $\alpha : [a, b] \to \mathbb{C}$ is a continuous complex valued function of one real variable, then

$$\left|\int_{a}^{b} \alpha(t) \, dt\right| \leq \int_{a}^{b} |\alpha(t)| \, dt.$$

Hint: Follow the argument in the book. (10 presentation points)