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April 23, 2020

1 Introduction

Here is the original statement of the problem:
Consider u,, : R — R by

[ =1/n? z<1/n
un(x)—{ 1/n2 @ >1/n for n € N.

1. Plot (draw the graph of)
k

fu(x) =) ua(z)

n=1
for k =1,2,3,4.
2. Does -
fl@) = u(z)
n=1

make sense as a non-decreasing function? If so what is the set of discontinuities

of f?

2 Preliminaries

A previous problem asserts that if v and v are non-decreasing, then

xo is a point of discontinuity for u = 1 is a point of discontinuity for u + v
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and
xo is a point of continuity for v and v = 1 is a point of continuity for u + v.

By induction these apply to finite sums of functions as follows: If uy,us,...u; are
non-decreasing functions, then

xo is a point of discontinuity for any one of the functions wuy, us, ..., uy

k
=—> g is a point of discontinuity for f; = Z u;j
j=1

and

Tp is a point of continuity for all of the functions uy, us, ..., uy
k
= 1 is a point of continuity for f = Zuj.

j=1
3 Solution
f 1= U f1‘f2 _________ f ?__.
T ;j 7
i1
X xXr

Figure 1: Plots of f; and fs

Let n € N be fixed. Notice that for # > 1/n and j > n, we know u;(x) = 1/52

Thus, for k >n
n—1 k

fle) = S wla) + Y 5. 0

J=1 J=



In particular, fi(x) < fry1(z) for & > n. Therefore, either {fi(x)}xr>, is bounded
above or not bounded above. We will show this sequence is bounded above:

k k
1 1 1
- = — + E Y
2 2 2

J

IN
w}—‘
N
=
—
—
.
-
—_

j=n+ )']
k
1 1 1
—5+ > (253
2 _
n j=n+1 J 1 J

_Lo (1o 1y,
- n? n n+1

111
n2 n k
<n+1
S 3

Since n is a fixed constant, so is Z;L:_ll uj(x), and for x > 1/n and k > n,

—_

n—

fu(x) = u(x) +

n+1
n2

< oQ.

Thus, for z > 1/n the sum

flz) = Z u;(x) is a finite number.
j=1

Since n € N was arbitrary, f(z) is given by the same formula for x > 0.
On the other hand, for x < 0, we know u;(x) = —1/52 for all j. Thus, frii(z) <
fr(x) and {fx(x)}r>n is either bounded below or not bounded above. We will show



this sequence is bounded below:
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> —2.

This means that for x < 0, not only do we know

[e.e]

- 1
flz) = Zuj(x) =— Z — is a finite number,
=1

=17

but we also know f takes only this constant value on (—o0,0]. In particular, f is
continuous at each z < 0. Let’s write the negative real number! f(0) as f(0) = — /6.
More generally, for each n € N and = > 1/n the value of f(z) may be expressed as

@) = L)+ 30 5 = S uyo) + T2 2)

where 7(n) is the unique well-defined positive number given by

ﬁ(n)zezjiz <r(l) =7

1To prove 2;11 1/4% = 7/6 is called the Basel Problem after the city of Basel in Switzerland
where Euler and the Bernoulli’s were from. For our purposes, we can just introduce 7 here as a
symbol to denote 6377, 1/ 42 = f(1) which we have shown is a well-defined finite positive real
number.



where equality holds only for n = 1.
Notice that for z > 0, we can take n € N with 1/n < x so that by (1)

n—1 k n—1 n—1
f(x)sz(x)zzug(x)ﬁ-Z%Z u](x)2—2%>—%:f(0)
=1 j=n j=1 j=1

Also, if 0 < 21 < x9, then we may take n € N with 1/n < x; so that

f(z1) Zuj (21) T) < Zu](:)sg) + @ = f(x2)

1

<.
Il

since Z;L:_ll u; is a finite sum of non-decreasing functions. We have now verified that
f:R—=Rby
—7/6, <0

fz) =
Z]O'il Uj(l’), z>0
is a well-defined non-decreasing function which is continuous at each point x with
x < 0.
We claim next that f is continuous at # = 0. Notice that since 7(n) > 0, the
expression (2) gives us an estimate for f(z) for each n > 1/z, namely

n—1
1
flz) < f(1/n) < Zu] 1/n) = ZF
7j=1
Let € > 0. Taking n large enough so that

n—1

1

we can take 6 = 1/n > 0. Then for |z| < ¢,

‘ﬂ@‘f@ﬂﬁﬂWD+%<e

Thus, f is continuous at x = 0. We claim, finally, that f is discontinuous precisely
on the set .
I'= {— neN } .
n
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In particular, f € C°(R\I'). The key idea to see this is already evident in Figure 1,
but we will illustrate it again in the case £ = 4 in accord with the instructions of the
problem:
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Figure 2: Plots of f3 (solid) and f; (dashed). The basic/important idea here is
that when you add uy to fx_1, in this case uy to f3, every value fy(x) for x > 1/k
is precisely equal to fp_i(x) plus a constant. In fact, for x > 1/k we have fy(x) =
fe—1(x)+1/k?. In the figure it may be observed that for z > 1/4, we have f;(z)+1/16.
Consequently, all points of continuity for f,_; are points of continuity for fy; all points
of discontinuity for fp_; are points of continuity for fi. This idea carries over to the
infinite sum because f(x) for x > 1/k is also presisely equal to fr_1(x) plus a constant.

For any zq > 0, let n € N\{1} with 1/n < z5. Then according to (2) for any
x> 1/n,

fla) =Y uy() + T )

Jj=1



Notice that the function g : R — R given by

oa) = S uy() + 70

J=1

is a finite sum of non-decreasing functions with discontinuities precisely in the set
I, ={1,1/2,...,1/n — 1}. Note well, that the functions f and g are not equal for
all z € R, but they are equal for z > 1/n. In particular, if zo € T',,, then

sup{f(z):x <z} =sup{g(z) : © < 2o} <inf{g(x) : x > zo} = inf{f(z) : z > 20},

so f has a discontinuity at x¢. Similarly, if zo ¢ T, then for any € > 0, we can take
61 > 0 with 2o — §; > 1/n so that for every x € R with |z — x| < 1, we have?

x>z — 01 > 1/n,

and (3) holds. By continuity of the function g, we can take 6 > 0 with 6 < d; such
that
|z — x| <6 - l9(x) — g(x0)| <e.

Equivalently, we could say

sup{g(x) : z < 2o} = inf{g(x) : . > o }.

Either way, for = with |z — x¢| < §, we know f(x) = g(x), so

|z — x| <4 = |f(x) = fzo)| <€
and
sup{f(z) : v < zo} = inf{f(z) : © > x0}.
That is, f is continuous at x. O

2If & < wp — 61, then g — x > 61 > 0, so |v — x| = 29 — x > §; which is a contradiction.
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