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1 Introduction

Here is the original statement of the problem:
Consider un : R → R by

un(x) =

{

−1/n2, x < 1/n
1/n2, x ≥ 1/n

for n ∈ N.

1. Plot (draw the graph of)

fk(x) =
k

∑

n=1

un(x)

for k = 1, 2, 3, 4.

2. Does

f(x) =

∞
∑

n=1

un(x)

make sense as a non-decreasing function? If so what is the set of discontinuities
of f?

2 Preliminaries

A previous problem asserts that if u and v are non-decreasing, then

x0 is a point of discontinuity for u =⇒ x0 is a point of discontinuity for u + v
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and

x0 is a point of continuity for u and v =⇒ x0 is a point of continuity for u + v.

By induction these apply to finite sums of functions as follows: If u1, u2, . . . uk are
non-decreasing functions, then

x0 is a point of discontinuity for any one of the functions u1, u2, . . . , uk

=⇒ x0 is a point of discontinuity for fk =

k
∑

j=1

uj

and

x0 is a point of continuity for all of the functions u1, u2, . . . , uk

=⇒ x0 is a point of continuity for fk =
k

∑

j=1

uj.

3 Solution

Figure 1: Plots of f1 and f2

Let n ∈ N be fixed. Notice that for x ≥ 1/n and j ≥ n, we know uj(x) = 1/j2.
Thus, for k > n

fk(x) =

n−1
∑

j=1

uj(x) +

k
∑

j=n

1

j2
. (1)
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In particular, fk(x) ≤ fk+1(x) for k > n. Therefore, either {fk(x)}k>n is bounded
above or not bounded above. We will show this sequence is bounded above:

k
∑

j=n

1

j2
=

1

n2
+

k
∑

j=n+1

1

j2

≤
1

n2
+

k
∑

j=n+1

1

(j − 1)j

=
1

n2
+

k
∑

j=n+1

(

1

j − 1
−

1

j

)

=
1

n2
+

(

1

n
−

1

n + 1

)

+

(

1

n + 1
−

1

n + 2

)

+ · · · +

(

1

k − 1
−

1

k

)

=
1

n2
+

1

n
+

(

−
1

n + 1
+

1

n + 1

)

+

(

−
1

n + 2
+

1

n + 2

)

+ · · ·+

(

−
1

k − 1
+

1

k − 1

)

−
1

k

=
1

n2
+

1

n
−

1

k

≤
n + 1

n2
.

Since n is a fixed constant, so is
∑n−1

j=1
uj(x), and for x ≥ 1/n and k > n,

fk(x) ≤

n−1
∑

j=1

uj(x) +
n + 1

n2
< ∞.

Thus, for x ≥ 1/n the sum

f(x) =

∞
∑

j=1

uj(x) is a finite number.

Since n ∈ N was arbitrary, f(x) is given by the same formula for x > 0.
On the other hand, for x < 0, we know uj(x) = −1/j2 for all j. Thus, fk+1(x) <

fk(x) and {fk(x)}k>n is either bounded below or not bounded above. We will show
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this sequence is bounded below:

k
∑

j=1

uj(x) = −1 −

k
∑

j=2

1

j2

≥ −1 −

k
∑

j=2

1

(j − 1)j

= −1 −

k
∑

j=2

(

1

j − 1
−

1

j

)

= −1 −

(

1 −
1

2

)

−

(

1

2
−

1

3

)

− · · · −

(

1

k − 1
−

1

k

)

= −2 +

(

1

2
−

1

2

)

+

(

1

3
−

1

3

)

+ · · · +

(

1

k − 1
−

1

k − 1

)

+
1

k

= −2 +
1

k
≥ −2.

This means that for x ≤ 0, not only do we know

f(x) =

∞
∑

j=1

uj(x) = −

∞
∑

j=1

1

j2
is a finite number,

but we also know f takes only this constant value on (−∞, 0]. In particular, f is
continuous at each x < 0. Let’s write the negative real number1 f(0) as f(0) = −π/6.
More generally, for each n ∈ N and x ≥ 1/n the value of f(x) may be expressed as

f(x) =

n−1
∑

j=1

uj(x) +

∞
∑

j=n

1

j2
=

n−1
∑

j=1

uj(x) +
π(n)

6
(2)

where π(n) is the unique well-defined positive number given by

π(n) = 6
∞

∑

j=n

1

j2
≤ π(1) = π

1To prove
∑

∞

j=1
1/j2 = π/6 is called the Basel Problem after the city of Basel in Switzerland

where Euler and the Bernoulli’s were from. For our purposes, we can just introduce π here as a
symbol to denote 6

∑

∞

j=1
1/j2 = f(1) which we have shown is a well-defined finite positive real

number.
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where equality holds only for n = 1.
Notice that for x > 0, we can take n ∈ N with 1/n ≤ x so that by (1)

f(x) ≥ fk(x) =
n−1
∑

j=1

uj(x) +
k

∑

j=n

1

j2
≥

n−1
∑

j=1

uj(x) ≥ −
n−1
∑

j=1

1

j2
> −

π

6
= f(0).

Also, if 0 < x1 < x2, then we may take n ∈ N with 1/n ≤ x1 so that

f(x1) =

n−1
∑

j=1

uj(x1) +
π(n)

6
≤

n−1
∑

j=1

uj(x2) +
π(n)

6
= f(x2)

since
∑n−1

j=1
uj is a finite sum of non-decreasing functions. We have now verified that

f : R → R by

f(x) =







−π/6, x ≤ 0

∑

∞

j=1
uj(x), x > 0

is a well-defined non-decreasing function which is continuous at each point x with
x < 0.

We claim next that f is continuous at x = 0. Notice that since π(n) > 0, the
expression (2) gives us an estimate for f(x) for each n ≥ 1/x, namely

f(x) ≤ f(1/n) <
n−1
∑

j=1

uj(1/n) = −
n−1
∑

j=1

1

j2
.

Let ǫ > 0. Taking n large enough so that

−
n−1
∑

j=1

1

j2
< −

π

6
+ ǫ,

we can take δ = 1/n > 0. Then for |x| < δ,

|f(x) − f(0)| ≤ f(|x|) +
π

6
< ǫ.

Thus, f is continuous at x = 0. We claim, finally, that f is discontinuous precisely
on the set

Γ =

{

1

n
: n ∈ N

}

.
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In particular, f ∈ C0(R\Γ). The key idea to see this is already evident in Figure 1,
but we will illustrate it again in the case k = 4 in accord with the instructions of the
problem:

Figure 2: Plots of f3 (solid) and f4 (dashed). The basic/important idea here is
that when you add uk to fk−1, in this case u4 to f3, every value fk(x) for x ≥ 1/k
is precisely equal to fk−1(x) plus a constant. In fact, for x ≥ 1/k we have fk(x) =
fk−1(x)+1/k2. In the figure it may be observed that for x ≥ 1/4, we have f4(x)+1/16.
Consequently, all points of continuity for fk−1 are points of continuity for fk; all points
of discontinuity for fk−1 are points of continuity for fk. This idea carries over to the
infinite sum because f(x) for x > 1/k is also presisely equal to fk−1(x) plus a constant.

For any x0 > 0, let n ∈ N\{1} with 1/n < x0. Then according to (2) for any
x ≥ 1/n,

f(x) =
n−1
∑

j=1

uj(x) +
π(n)

6
. (3)
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Notice that the function g : R → R given by

g(x) =

n−1
∑

j=1

uj(x) +
π(n)

6

is a finite sum of non-decreasing functions with discontinuities precisely in the set
Γn = {1, 1/2, . . . , 1/n − 1}. Note well, that the functions f and g are not equal for
all x ∈ R, but they are equal for x ≥ 1/n. In particular, if x0 ∈ Γn, then

sup{f(x) : x < x0} = sup{g(x) : x < x0} < inf{g(x) : x > x0} = inf{f(x) : x > x0},

so f has a discontinuity at x0. Similarly, if x0 /∈ Γn, then for any ǫ > 0, we can take
δ1 > 0 with x0 − δ1 > 1/n so that for every x ∈ R with |x − x0| < δ1, we have2

x > x0 − δ1 > 1/n,

and (3) holds. By continuity of the function g, we can take δ > 0 with δ < δ1 such
that

|x − x0| < δ =⇒ |g(x) − g(x0)| < ǫ.

Equivalently, we could say

sup{g(x) : x < x0} = inf{g(x) : x > x0}.

Either way, for x with |x − x0| < δ, we know f(x) = g(x), so

|x − x0| < δ =⇒ |f(x) − f(x0)| < ǫ

and
sup{f(x) : x < x0} = inf{f(x) : x > x0}.

That is, f is continuous at x0. �

2If x ≤ x0 − δ1, then x0 − x ≥ δ1 > 0, so |x − x0| = x0 − x ≥ δ1 which is a contradiction.
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