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Here we construct the rational numbers following Gunning’s An Introduction to
Analysis. We begin with the totally ordered ring of integers

Z = {0,±1,±2,±3, . . .}

noting that Z is not a field because the nonzero elements

Z∗ = {±1,±2,±3, . . .}

do not all have multiplicative inverses. One does have, however, that Z∗ is closed
under multiplication and has a (multiplicative) identity, so Z∗ is a monoid, and Z is a
ring, and integral domain in fact and a unique factorization domain. The construction
of an injection

φ : Z → Q

of the integers Z into the set of rational numbers Q, which will be defined below,
essentially involves appending to Z the multiplicative inverses of the nonzero elements
in Z∗, i.e., fractions 1/n, and then making sure we keep the ring structure (closure
under the operations in particular).

Without further adieu then, we note that Gunning’s construction may again be
thought of in two steps

Z → Z × Z∗ → (N0 × Z∗)/ ∼ = Q

where Z × Z∗ = {(m, n) : m ∈ Z and n ∈ Z∗} is the Cartesian product (of Z and
Z∗) and “∼” is a certain equivalence relation. The pair (m, n) represents the fraction
m/n, and we should introduce equivalence classes for each such fraction containing
(−m)/(−n) and (ma)/(na) for every nonzero integer a. This is accomplished as
follows:
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We say (m, n) ∼ (r, s) if the familiar condition

m

n
=

r

s

holds. Of course, we can’t say this yet, so what we really say is

(m, n) ∼ (r, s) ⇐⇒ ms = nr. (1)

Therefore, elements of Q (rational numbers) initially have the rather unappealing
form

[(m, n)] = {(r, s) ∈ Z × Z∗ : ms = nr}

with the integers n ∈ Z taking the form

[(n, 1)].

Here are the important results to prove:

Theorem 1 Q = (Z × Z∗)/ ∼ is a field under the operations

[(m, n)] + [(r, s)] = [(sm + nr, ns)] and [(m, n)][(r, s)] = [(mr, ns)]

with additive and multiplicative identity

[(0, 1)] and [(1, 1)]

respectively, and for which the additive and multiplicative inverses of [(m, n)] are

[(−m, n)] and [(n, m)]

respectively, with the latter being well-defined only when m 6= 0 or equivalently [(m, n)] 6=
[(0, 1)]. Furthermore, Q is a totally ordered field with order determined by the pos-
itives

{[(m, n)] ∈ Q : m, n ∈ N}

which determine the partition

{[(−m, n)] ∈ Q : m, n ∈ N} ∪ {[(0, 1)]} ∪ {[(m, n)] ∈ Q : m, n ∈ N}.

Theorem 2 φ : Z → Q by φ(n) = [(n, 1)] is an order preserving injection which is
also a ring homomorphism. That is,

φ(m + n) = φ(m) + φ(n), and

φ(mn) = φ(m)φ(m) for all m, n ∈ Z.
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As in the case of construction of Z from N0 or N, once the construction is satisfac-
torily executed, the unappealing notation of equivalence classes in Q is “forgotten”
and we write n = n/1 for φ(n), we write Z for φ(Z) (we write N for φ(N) = φ ◦ ν0(N)
etc.), and we write

m

n
for [(m, n)].

One particular aspect of (the representation of) rational numbers should be observed
with respect to the positioning of “signs” and verified, namely,

−[(m, n)] = [(−m, n)] = [(m,−n)] corresponding to −
m

n
=

−m

n
=

m

−n
.

It follows in particular that [(−m,−n)] = [(m, n)] for m, n ∈ N, so we can always
assume the numerator and denominator of a positive rational are positive integers.
Thus, if we write

Q+ = {m/n ∈ Q : m, n ∈ N}

there is no essential ambiguity.

Incompleteness of Q

Among the most important arithmetic results in Q is a negative one.

Definition 1 A subset A in a partially ordered set X is bounded above if there is
an element x ∈ X for which

a ≤ x for all a ∈ A.

It may be that the set of all upper bounds B for a set A in a given set X, that is

B = {x ∈ X : a ≤ x for all a ∈ A},

is empty. If B 6= φ, we say A is bounded above. If A is bounded above, it may be
that B ∩ A = φ. If B ∩ A 6= φ, then B ∩ A = {amax} is a singleton, and we write

amax = maxA.

Definition 2 If A is a subset of a partially ordered set X, then A is bounded below

if there is an element x ∈ X for which

x ≤ a for all a ∈ A.
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If a set A is bounded below and A∩L = {amin} where L is the set of all lower bounds
of A, then the element amin is called the minimum of A, and we write min A = amin.
Whenver A is bounded above, the set of upper bounds B is bounded below.

Definition 3 If X is a partially ordered set in which every subset A which is bounded
above has a set of upper bounds B with a well-defined minimum min B, then X is
said to be complete or to have the least upper bound property.

Here is the negative result:

Theorem 3 Q is not complete. There are sets in Q which are bounded above and
have no least upper bound. There are sets in Q which are bounded below and have no
greatest lower bound.

Exercise 1 Show A = {a ∈ Q : a2 ≤ 2} is bounded above, but the set

B = {x ∈ Q : a ≤ x for every a ∈ A}

does not have a well-defined minimum.

This deficiency may be viewed as the fundamental motivation for extending the ra-
tional field to the field or real numbers R.

Here is a solution to the exercise above: First if 3/2 < a for a ∈ A, then 2 <
9/4 < a2 which is a contradiction, so 3/2 is an upper bound for A.

Assume (BWOC) that m/n = min B. Notice that m/n > 1 since 1 ∈ A (and in
fact, 5/4 > 1 is also in A). In particular, this means m 6= 1. On the other hand, since
1 < m/n < 3/2, we know

1. We can assume m, n ∈ N, and

2. m/n /∈ N, so n 6= 1.

By the unique factorization of natural numbers, there are unique primes p1 < p2 <
· · · < pk and for each pj, j = 1, . . . , k there is a unique power aj ∈ N such that

m =

k
∏

j=1

p
aj

j . (2)

Similarly, there are unique primes q1 < q2 < · · · < qℓ and for each qj , j = 1, . . . , ℓ
there is a unique power bj ∈ N such that

n =

ℓ
∏

j=1

q
bj

j . (3)
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We claim, furthermore, that (m/n)2 = m2/n2 = 2. If (m/n)2 < 2, then we claim
there is another rational number a ∈ A for which a > m/n contradicting the fact
that m/n = min B. In fact, this follows from another important property of the
rational numbers:

Theorem 4 (Archimedian Property of Q) The field Q is an Archimedian field,
that is, given any γ ∈ Q, there is some integer N ∈ N for which γ < N .

This result is also phrased in the following equivalent way:

Corollary 1 (Archimedian Property of Q) Given any positive γ ∈ Q, there is some
integer N ∈ N for which 1/N < γ.

Proof: 1/γ ∈ Q, so by the (first) Archimedian property, there is some N ∈ N with
1/γ < N . Therefore, 0 < 1/N < γ. �

Returning to our consideration of m/n, we wish to find an integer N ∈ N for
which a = m/n + 1/N ∈ A. That is,

(

m

n
+

1

N

)2

< 2.

In other words we want to show
(m

n

)2

+ 2
m

n

1

N
+

1

N2
< 2. (4)

This seems plausible since we can choose N very large, or equivalently, 1/N very
small. There is an obvious small positive number which should be of use to us,
namely,

γ1 = 2 −
(m

n

)2

.

Thus, we may start by assuming, i.e., choosing N ∈ N according to the second
Archimedian property so that 1/N < γ1. This may not be good enough however, so
we observe that for any K ∈ N, we may also take N ∈ N so that

1

N
< γ2 =

1

K

[

2 −
(m

n

)2
]

.

Rearranging this inequality gives

(m

n

)2

+
K

N
< 2.
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Comparing this expression to the desired inequality (4), we see we can obtain what
we want if

2
m

n

1

N
+

1

N2
<

K

N
.

Rearranging this inequality, we see it is equivalent to

2mN + n < KnN or
1

N
<

Kn − 2m

n
.

Let us consider the plausibility of this inequality. By the first Archimedian property,
we may choose K ∈ N so that K > 2m/n. Then (Kn − 2m)/n > 0, and we may
choose N by the second Archimedean property so that

1

N
< γ = min

{

1

K

[

2 −
(m

n

)2
]

,
Kn − 2m

n

}

. (5)

Reversing our preliminary calculations, we have from (5) that

1

N
<

Kn − 2m

n
.

It follows from this that

2
m

n

1

N
+

1

N2
<

K

N
.

Hence,
(m

n

)2

+ 2
m

n

1

N
+

1

N2
<

(m

n

)2

+
K

N
.

However, it also follows from (5) that

K

N
< 2 −

(m

n

)2

.

Thus, (4) holds as desired, and we have our contradiction. We have shown (m/n)2 ≥
2.

We now consider the possibility that (m/n)2 > 2. If this happens, we claim there
is another upper bound b ∈ B with b < m/n, again contradicting the assumption
that m/n = min B. Taking b = m/n−1/N , we proceed with a preliminary calculation
to establish

(m

n

)2

− 2
m

n

1

N
+

1

N2
> 2. (6)
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This time the appropriate N is easier to find. We may choose K large enough so that
Kn − 2m > 0. Then it will always be the case for any N ∈ N that

N > −
n

Kn − 2m
and consequently − 2

m

n

1

N
+

1

N2
> −

K

N
.

Then, taking N ∈ N so that

1

N
<

1

K

[

(m

n

)2

− 2

]

.

It then follows that
(m

n

)2

−
K

N
> 2

so that
(

m

n
−

1

N

)2

>
(m

n

)2

−
K

N
> 2.

Now, if a ∈ A satisfies a ≥ b = m/n − 1/N , then a2 > b2 > 2, and we have a
contradiction. This means b is an upper bound for A as desired, and we have the
final contradiction showing (m/n)2 = 2.

Finally, we return to the prime factor decompositions of m and n given in (2) and
(3). From these we have

p2a1

1 p2a2

2 · · · p2ak

k = 2q2b1
1 q2b2

2 · · · + q2bℓ

ℓ . (7)

This means 2
∣

∣m = p2a1

1 p2a2

2 · · ·p2ak

k , and since 2 is the smallest prime, we must have
p1 = 2. By the cancellation rule in Q, we can obtain from (7) the equation

22a1−1p2a2

2 · · · p2ak

k = q2b1
1 q2b2

2 · · ·+ q2bℓ

ℓ .

The same reasoning now implies 2
∣

∣q and

22a1−1p2a2

2 · · · p2ak

k = 22b1q2b2
2 · · ·+ q2bℓ

ℓ .

This contradicts unique prime factorization since the power 2a1 − 1 of 2 on the left
is odd while the power 2b1 of 2 on the right is even. �

The solution of the exercise above contains a proof of the fact that there is no
rational number m/n for which (m/n)2 = 2. It differs from most proofs of this fact
in not assuming the fraction m is in lowest terms.
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Reduction of Fractions to Lowest Terms

There is also an important consequence of the unique factorization in N and Z for
the fractions in Q. Each fraction may be uniquely reduced to lowest terms. We
attempt to clarify this question of representation or notation here.

There was already nominally some ambiguity of notation in Z since −(−n) and
n are the same integer. The ambiguity with standard notation for fractions is much
more noticable in Q since

mq

nq
=

m

n

whenever m/n ∈ Q and q ∈ Z∗.
The main facts may be stated as follows:

Theorem 5 (reduced form for positive rationals) Given m/n ∈ Q+, exactly one of
the following three conditions holds:

1. There exist unique prime numbers p1 < p2 < · · · < pk and q1 < q2 < · · · < qℓ,
with

{p1, p2, . . . , pk} ∩ {q1, q2, . . . , qℓ} = φ,

and for each prime pj j = 1, 2, . . . , k, there is a unique power aj ∈ N and for
each prime qj, j = 1, 2, . . . , ℓ, there is a unique power bj ∈ N such that

m

n
=

∏k

j=1
p

aj

j
∏k

j=1
q

bj

j

. (8)

Notice this equality should not be interpreted to mean m = pa1

1 pa2

2 · · · pak

k or that
n = qb1

1 qb2
2 · · · qbℓ

ℓ but rather in the sense of equality in Q expressed by (1).

2. m/n ∈ N in the same sense of (1), i.e., so that there is some unique q ∈ φ(N)
such that m = qn.

3. There is some unique q ∈ N\{1} such that

m

n
=

1

q
. (9)

In the first and third cases, the expressions on the right in (8) and (9) are said to
represent m/n in lowest terms. In the second case, m/n is represented by the integer
q in lowest terms.
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Any two nonzero integers p and q are said to be relatively prime if their greatest
common divisor1 in N is 1. Note that in the first case the products

k
∏

j=1

p
aj

j and
k

∏

j=1

q
bj

j

are relatively prime.

Theorem 6 (reduced form for rationals) Given m/n ∈ Q∗ = Q\{0}, exactly one of
the following four conditions holds:

1. There exist unique prime numbers p1 < p2 < · · · < pk and q1 < q2 < · · · < qℓ in
N, with

{p1, p2, . . . , pk} ∩ {q1, q2, . . . , qℓ} = φ,

and for each prime pj j = 1, 2, . . . , k, there is a unique power aj ∈ N and for
each prime qj, j = 1, 2, . . . , ℓ, there is a unique power bj ∈ N such that

m

n
=

∏k

j=1
p

aj

j
∏k

j=1
q

bj

j

. (10)

2. There exist unique prime numbers p1 < p2 < · · · < pk and q1 < q2 < · · · < qℓ in
N, with

{p1, p2, . . . , pk} ∩ {q1, q2, . . . , qℓ} = φ,

and for each prime pj j = 1, 2, . . . , k, there is a unique power aj ∈ N and for
each prime qj, j = 1, 2, . . . , ℓ, there is a unique power bj ∈ N such that

m

n
=

−
∏k

j=1
p

aj

j
∏k

j=1
q

bj

j

. (11)

3. m/n ∈ Z∗ in the sense that there is some unique q ∈ φ(Z∗) such that m = qn.

4. There is some unique q ∈ Z\{0,±1} such that

m

n
=

1

q
. (12)

1Recall that the greatest common divisor is always defined to be an integer in N even when

p, q ∈ Z∗.

9



Again, in the first, second and fourth cases, the expressions on the right in (10),
(11), and (12) are said to represent m/n in lowest terms. In the third case, m/n
is represented by the integer q in lowest terms.

Again in the first and second cases the products

k
∏

j=1

p
aj

j and
k

∏

j=1

q
bj

j

are relatively prime.

1 Countability of Q

As a final application of the fact that any rational number may be uniquely reduced
to lowest terms, we give a short proof that the rationals are countable.2 It is enough
to find an injection f : Q\{0} → N. It is easy to check that if p/q = r/s ∈ Q\{0}
with both fractions p/q and r/s in lowest terms, then p = r and q = s. Also, we know
that in this form, we may assume p ∈ Z\{0} and q ∈ N. Consequently, f : Q → N by

f(p/q) =

{

2p3q if p > 0,
2p3q5 if p < 0

(where p/q is in lowest terms) is well-defined. Furthermore, if f(p/q) = f(r/s), then

2p3q = 2r3s, 2p3q5 = 2r3s, 2p3q = 2r3s5, or 2p3q5 = 2r3s5.

In the first case and the last case p = r and q = s by the unique prime factorization of
the integer 2p3q. In the second and third cases, we get a contradiction of the unique
factorization of the integers 2r3s and 2p3q respectively. The only possible conclusion
is

f(p/q) = f(r/s) =⇒ p/q = r/s.

That is, f is injective. �

As a final note, it is much easier and technically correct to show the rationals are
countable in this manner than by using something like the “hand-waving” argument
Gunning gives (originally due to Cantor) that a countable union of countable sets
is countable (Theorem 1.4 of § 1.1). It is also much more difficult to give an actual

2I learned this proof from Simarpreet Kareer, a student in my Spring 2020 analysis course.
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enumeration of the rationals, that is a bijection f : N → Q. All three of the
following results/problems present some difficulties with regard to giving an elegant
precise proof.

Exercise 2 Give an explicit enumeration of the rationals.

Theorem 7 The countable union of countable sets is countable.

Theorem 8 The Cartesian product of countable sets is countable.

Actually, the countability of the Cartesian product is susceptible to the (m, n) 7→ 2m3n

argument above, but to give an explicit enumeration is trickier, though it seems easier
to write down a bijection from the integer lattice N × N to N than the inverse.
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