1. (25 points) Find the distance from $A=\{(x,y):x>0,\ |y|\leq \sin^2 x\}$ to $B=\{(-j,0):j\in\mathbb{N}\}$

Solution: Given any $(x, y) \in A$ and $(-j, 0) \in B$,

$$|(x,y) - (-j,0)| = \sqrt{(x+j)^2 + y^2} \ge \sqrt{(x+j)^2} = x+j > 1$$

since x > 0 and $j \ge 1$. On the other hand, taking j = 1 and $(1/n, 0) \in A$, we find

$$|(1/n,0) - (-1,0)| = 1 + 1/n \to 1$$
 as $n \to \infty$.

Therefore the distance from A to B is 1.

Name and section:	

2. (25 points) Define the distance between two sets in \mathbb{R}^n .

Prove that if A and B are compact sets in \mathbb{R}^n , then there is some $a \in A$ and some $b \in B$ with

$$dist(A, B) = |a - b|.$$

Solution: Given two nonempty sets A and B,

$$\operatorname{dist}(A,B) = \inf\{|a-b| : a \in A, \ b \in B\}.$$

Let $a_j \in A$ and $b_j \in B$ with $|a_j - b_j| \to \operatorname{dist}(A, B)$. Such points exist by the definition of infemum. Since A and B are compact sets, they are bounded. Therefore, $\{a_j\}$ and $\{b_j\}$ are bounded sets as well. We may therefore take a convergent subsequence of $\{a_j\}$. From the corresponding subsequence of $\{b_j\}$ we may also extract a second convergent subsequenct. In this way, we obtain a subsequence $\{a_{j_k}\}$ and the corresponding subsequence $\{b_{j_k}\}$ with the first subsequence converging to a point $a_0 \in \mathbb{R}^n$ and the second converging to a point $b_0 \in \mathbb{R}^n$. Since A and B are closed, we see that $a_0 \in A$ and $b_0 \in B$.

Finally,

$$\operatorname{dist}(A, B) = \lim_{j \to \infty} |a_{j_k} - b_{j_k}|$$
$$= |a_0 - b_0|$$

since $||a_{j_k} - b_{j_k}| - |a_0 - b_0|| \le |a_{j_k} - b_{j_k} - (a_0 - b_0)| \le |a_{j_k} - a_0| + |b_{j_k} - b_0| \to 0$ as $k \to \infty$.

fame and section:	ame and section:	
-------------------	------------------	--

3. (25 points) (Lemma 15.2) Define *convergence* for a sequence of points in \mathbb{R}^n .

Prove that if a sequence $\{p_j\}_{j=1}^{\infty}$ converges to a point q, then any subsequence of $\{p_j\}$ also converges to q.

Solution: A sequence $\{p_j\} \subset \mathbb{R}^n$ converges to $q \in \mathbb{R}^n$ if for any $\epsilon > 0$, there is some N > 0 for which

$$j > N \implies p_j \in B_{\epsilon}(q).$$

We first note that the indices j_k of any subsequence satisfy $j_k \geq k$ for all k. (This follows from an easy induction.)

Now, given a subsequence $\{p_{j_k}\}$ of the convergent sequence $\{p_j\}$, there is some N such that

$$k > N \implies p_k \in B_{\epsilon}(q).$$

Consequently,

$$k > N \qquad \Longrightarrow \qquad j_k \ge k > N \qquad \Longrightarrow \qquad p_{j_k} \in B_{\epsilon}(q).$$

This means $p_{j_k} \to q$ as $k \to \infty$.

d section:

4. (25 points) (16I(b)) Define what it means for a sequence to be Cauchy.

Show that the sequence $\{(j+1)/j\}$ is Cauchy.

Solution: $\{p_j\}$ is Cauchy if for any $\epsilon > 0$, there is some N such that when j, k > N there holds $|p_j - p_k| < \epsilon$.

Let $\epsilon > 0$. Note that

$$\frac{j+1}{j} - \frac{k+1}{k} = \frac{1}{j} - \frac{1}{k}.$$

Thus, if $N > 2/\epsilon$ and j, k > N, then

$$\left|\frac{j+1}{j} - \frac{k+1}{k}\right| \le \frac{1}{j} + \frac{1}{k} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$