
Math 4317, Exam 2 (practice) Name and section:

1. (25 points) Define the term compact.

Prove directly from the definitions (without using the Heine-Borel Theorem) that a
closed subset of a compact set is compact.

Solution: A set K is compact if any open cover of K has a finite subcover.

Let K be a compact set and let C be a closed subset of K. Then notice that U0 = Cc

is an open set. Let {Uα}α∈Γ be any open cover of C. Then {Uα} ∪ {U0} is an open
cover of K. Since K is compact, this cover has a finite subcover:

{U0, Uα1
, Uα2

, . . . , Uαm
}.

We claim that {Uα1
, Uα2

, . . . , Uαm
} is a finite cover of C. In fact, if x ∈ C, then x ∈

K\U0. Therefore x must be in ∪Uαj
. Therefore, C ⊂ ∪Uαj

, and {Uα1
, Uα2

, . . . , Uαm
}

is a cover. It is therefore a finite open subcover of C, and C is compact.
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2. (25 points) Define what it means for a function f : X → X̃ to be continuous at a point

p0 ∈ X where X and X̃ are metric spaces with distances d and d̃ respectively.

Consider f : R2 → R by
f(x, y) = 4

√

x2 + y2

where R2 and R are taken with the usual Euclidean metrics. Prove that f is continuous
at 0.

Solution:

f is continuous at a point p0 ∈ X if for any ǫ > 0, there is some δ > 0 such that

d(p, p0) < δ implies d̃(f(p), f(p0)) < ǫ.

Let ǫ > 0. Set δ = ǫ2. If

d((x, y), (0, 0)) =
√

x2 + y2 < δ,

then
|f(x, y) − f(0, 0)| = | 4

√

x2 + y2| <
√

δ = ǫ.

This means that f is continuous at (0, 0).
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3. (25 points) Given a fixed point p0 in a metric space X with distance d, consider the
function f : X → R by f(x) = d(p0, x). Show that f is continuous on X.

Solution: Let q0 ∈ X and ǫ be fixed. Let δ = ǫ and assume d(x, q0) < δ. We first
note that

|f(x) − f(q0)| = |d(p0, x) − d(p0, q0)|.
On the one hand, d(p0, x) − d(p0, q0) ≤ d(q0, x) by the triangle inequality. On the
other hand, d(p0, q0) − d(p0, x) ≥ −d(q0, x) (also by the triangle inequality). There-
fore,

|d(p0, x) − d(p0, q0)| ≤ d(q0, x) < δ = ǫ,

and we have shown f is continuous at q0.
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4. (25 points) Given a sequence of real valued functions {fj}∞j=1 with common domain a
metric space X, define what it means for these functions to converge uniformly.

Give an example of a sequence of functions fj ∈ C0[0, 1] which converges pointwise at
every point, but does not converge uniformly.

Solution: The sequence converges uniformly, if there is a function f : X → R such
that for any ǫ > 0, there is some N such that j > N implies |fj(x) = f(x)| < ǫ for
every x ∈ X.

The sequence of functions determined by fj(x) = xj satisfies the desired conditions.
For each a < 1, we find fj(a) → 0, and fj(1) ≡ 1. Thus, we have pointwise
convergence at every a ∈ [0, 1] to the function f : [0, 1] → R given by

f(x) =

{

0, x < 1
1, x = 1.

On the other hand, by the intermediate value theorem, there points aj for every j
with fj(aj) = 1/2. It is therefore clear that

max
a∈[0,1]

|fj(a) − f(a)| ≥ 1/2,

so fj does not converge uniformly to f . (Note: In fact, the value 1/2 may be replaced
with any positive value less than 1.)


