Math 4317, Exam 1 (practice)

1. (i) State precisely the definition of an algebraic group.

(ii) Are the integers a *field*? (Explain your reasoning carefully.)

(25 points) Solution:

- (i) A group is a set G together with an operation $*: G \times G \to G$ satisfying the following:
 - **G1:** (a * b) * c = a * (b * c) for all elements $a, b, c \in G$. This is called the associative property.
 - **G2:** There is a special element e (called the identity) with the property that a * e = a = e * a for all $a \in G$.
 - **G3:** For each $a \in G$, there is an element $b \in G$ such that a * b = e = b * a. The element b is called an *inverse* of a.
- (ii) The integers are not a field because it is required that the nonzero elements of a field form a group under multiplication. We know, however, that 2 is a nonzero integer, and there is no integer k for which 2k = 1. This means, 2 has no multiplicative inverse, so the nonzero integers are not a group, and the integers, consequently, are not a field.

Name and section:

2. (25 points) Give examples of sets of real numbers A, B, and C with the following properties:

(i) $\sup A \in A$.

(ii) $\sup B \in \mathbb{R} \setminus B$.

(iii) $\sup C \notin \mathbb{R}$.

Solution:

- (i) $A = \{0\}$. In this case, $\sup A = 0 \in A$.
- (ii) $B = \{1 1/j : j \in \mathbb{N}\}$. In this case, $\sup B = 1 \in \mathbb{R} \setminus B$.
- (iii) $C = \mathbb{N}$. In this case, $\sup C = +\infty \notin \mathbb{R}$.

Name and section:

3. (25 points) (6C) Define bounded above.

Define upper bound.

Define supremum.

Solution:

- 1. Given a set A of real numbers, we say A is bounded above if there is a real number M with $M \ge x$ for every $x \in A$.
- 2. Given a set A of real numbers which is bounded above, we say a real number M is an *upper bound* for A if $x \leq M$ for every $x \in A$.
- 3. Given a nonempty set A of real numbers which is bounded above, a number M is the supremum of A (or the least upper bound of A), if M is an upper bound for A and if $B \in \mathbb{R}$ is any other upper bound for A, then $B \ge M$.

4. (i) Define what it means for a set in a metric space to be *open*.

(ii) For this question, let us define a *closed* set to be one whose complement is open. Using your definition from part (i), show that a finite union of closed sets is closed.

(25 points) Solution:

(i) A set U in a metric space X is open if whenever $x \in U$, there is some r > 0 such that

$$B_r(x) = \{\xi \in X : d(\xi, x) < r\} \subset U$$

where $d: X \times X \to [0, \infty)$ is the distance function for X.

(ii) Let C_1, C_2, \ldots, C_m be closed sets in a metric space X. If $x \in (\cup C_j)^c = \cap C_j^c$, then there are numbers r_1, \ldots, r_m , all positive, such that

$$B_{r_j}(x) \subset C_j^c$$
 for $j = 1, \dots, m$.

(This is because each C_i^c is open.)

Let $r = \min\{r_1, \ldots, r_m\}$. Notice that r > 0. Furthermore,

$$B_r(x) \subset B_{r_j}(x) \subset C_j^c$$
 for $j = 1, \dots, m$.

Therefore, $B_r(x) \subset \cap C_j^c = (\cup C_j)^c$. This means, $(\cup C_j)^c$ is open, and that means $\cup C_j$ is closed. \Box