
Math 4317, Final Exam: Analysis (practice)

1. (20 points) Prove or disprove: The intersection of open sets is open. (Fully justify your
answer.)

Solution: Disproof: Each of the intervals (0, 1 + 1/j) for j = 1, 2, . . . is open, but

∩∞

j=1(0, 1 + 1/j) = (0, 1]

is not open because there is no open ball Br(1) with positive radius r and center
x = 1 which lies entirely in the intersection.



2. (a) (10 points) Define the term compact.

(b) (10 points) Prove directly from the definitions (without using the Heine-Borel The-
orem) that a compact set is closed.

Solution:

(a) A set K is compact if any open cover of K has a finite subcover.

(b) We need to show the complement of K is open. Let K be a compact set and
let x be in the complement of K. Then notice that {Rn\Br(x)}r>0 is an open
cover of K. Since K is compact, this cover has a finite subcover:

{Rn\Br1
(x),Rn\Br2

(x), . . . ,Rn\Brk
(x)}.

Taking r = min{r1, . . . , rk} > 0 , we find that K ⊂ Rn\Br(x). Thus, Br(x) ⊂
Kc, and it follows that the complement Kc is open. Thus, K is closed.



3. Problems 3 and 4 involve the sequence of functions fj : (0, 1) → R given by fj(x) =
1/(x + 1/j) for j = 1, 2, . . ..

(a) (10 points) Define the term uniformly continuous.

(b) (10 points) Prove or disprove: Each function fj is uniformly continuous.

Solution:

(a) Given a function f : A → Rm with A ⊂ Rn, we say f is uniformly continuous if
given ǫ > 0, there is some δ > 0 such that

|f(x2) − f(x1)| < ǫ whenever x1, x2 ∈ A with |x2 − x1| < δ.

(b) Proof: Let j be one of the functions in question. Given ǫ > 0, let δ = ǫ/j2 and
note that |x+1/j|, |x0+1/j| ≥ 1/j for any x, x0 ∈ (0, 1), so |(x+1/j)(x0+1/j)| ≤
1/j2. It follows that whenever x and x0 are in A = (0, 1) with |x−x0| < δ, then

|fj(x) − fj(x0)| = |1/(x + 1/j) − 1/(x0 + 1/j)|

= |x0 − x|/|(x + 1/j)(x0 + 1/j)|

≤ j2|x − x0|

< ǫ.

This shows that fj is uniformly continuous.



4. (a) (5 points) Define what it means for a sequence of functions gj : (0, 1) → R for
j = 1, 2, . . . to converge pointwise to a given function g : (0, 1) → R.

(b) (5 points) Show that the sequence of functions {fj}
∞

j=1 from problem 4 converges
pointwise to some function f .

(c) (5 points) Define what it means for a sequence of functions gj : (0, 1) → R for
j = 1, 2, . . . to converge uniformly to a given function g : (0, 1) → R.

(d) (5 points) Prove or disprove: the sequence of functions {fj}
∞

j=1 from problem 4
converges uniformly to f .

Solution:

(a) A sequence of functions {gj} converges pointwise to a function g if for each fixed
x, and each ǫ > 0, there is some N such that

j > N implies |gj(x) − g(x)| < ǫ.

(b) The limit function is f(x) = 1/x. To see this, fix any x > 0. Then

|fj(x) − f(x)| = |1/(x + 1/j) − 1/x| =
1/j

x(x + 1/j)
<

1

jx2
.

Thus, if ǫ is any positive number and N > 1/(ǫx2),

j > N implies |fj(x) − f(x)| < ǫ.

(c) Such a sequence converges uniformly if there is some N such that

j > N implies |gj(x) − g(x)| < ǫ (for all x).

(d) Disproof: The sequence {fj} does not converge uniformly to 1/x. To see this,
take ǫ0 = 1. Given any N , we need to find some x and some j > N with
|fj(x) − f(x)| > 1. Using the equalities in the computation of part (b) above,
we see that for any x and j with x < 1/j, we have |fj(x)−f(x)| > 1/(2x). Thus,
fixing any j > N , we can take x < min{1/j, 1/2}, and we have |fj(x)− f(x)| >
1 = ǫ0.



5. (a) (10 points) Give a correct statement of the mean value theorem.

(b) (10 points) Use the mean value theorem to prove: If f, g ∈ C0[a, b] and the deriva-
tives f ′, g′ : (a, b) → R exist with f ′ ≡ g′, then there is some constant c ∈ R such
that f(x) = g(x) + c for x ∈ [a, b].

Solution:

(a) MVT: If φ ∈ C0[a, b] and the derivative φ′ : (a, b) → R exists, then there is some
ξ ∈ (a, b) such that

φ′(ξ) =
φ(b) − φ(a)

b − a
.

(b) Consider the function φ = f − g. This function satisfies the hypotheses of the
mean value theorem on every interval [α, β] ⊂ [a, b], and φ′ ≡ 0. Consequently,
for some ξ ∈ (a, b),

f(β) − g(β)− [f(α) − g(α)]

β − α
= φ′(ξ) = 0.

Therefore, φ(x) = f(x) − g(x) ≡ c is constant. This means f(x) = g(x) + c.



6. (a) (10 points) Define the Riemann integral of a function f : [a, b] → R.

(b) (10 points) Prove the integral you have defined, if well-defined, is unique.

Solution:

(a) Given a function f : [a, b] → R, the number I is the integral of f over the
interval [a, b] if the following holds:

For any ǫ > 0, there is some δ > 0 such that
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whenever P : a = x0 < x1 < · · · < xk = b is a partitition of [a, b] with

‖P‖ = max
j

(xj+1 − xj) < δ

and x∗

j ∈ [xj , xj+1] for j = 0, 1, . . . , k − 1.

(b) Let I and J be two numbers which both satisfy the definition of

∫ b

a

f(x)dx.

Let ǫ > 0. Take a particular partition with small enough norm so that
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We then have by the triangle inequality
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