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A typical undergraduate course in analysis, like this course or the one for which
our textbook An Introduction to Analysis by Robert Gunning was written, is built
on a foundation of particular number systems. These number systems include

N = {1, 2, 3, . . .} (the natural numbers)

N0 = {0, 1, 2, 3, . . .} (the natural numbers with zero)

Z = {0,±1,±2,±3, . . .} (the integers)

Q = {p/q : p ∈ Z, q ∈ N} (the rational numbers)

R = {x : −∞ < x < ∞} (the real numbers)

C = {x + iy : x, y ∈ R} (the complex numbers)

R ∪ {∞} and/or R ∪ {±∞} (the extended real numbers)

C ∪ {∞} (the Riemann sphere or extended complex numbers).

Some (if not many) of the properties of each of these sets must be “known” to make
progress and understand analysis. For most of you, at this stage in your mathematical
education/journey (whatever you want to call it), probably your comfort level with
the construction and intracacies of these sets starts to run out somewhere between Q

and R on this list. Naturally then, extending at least the comfort you have in working
with integers and formally considering some properties of any and all of these sets is
included in the material of any introductory course in analysis at this level. There
is no natural prerequisite course in which this material is covered. It is also worth
noting, on the other hand, that there are a great many mysteries about even the
prime numbers within the simplest set N which are not known to anyone, and cannot
be covered.
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From a historical perspective, after all these sets were in common use both in the
practice and teaching of analysis, it was discovered that the rigorous consideration
of these sets in analysis can lead to some unsettling questions for which no one had
good answers. For example:

Is it possible to prove two statements about natural numbers which are

mutually contradictory?

—David Hilbert (1900)

It turns out the answer is very difficult. It is not an unqualified “yes” to say the least.1

Nevertheless, a great deal of effort and careful thought has been applied to questions
like this perhaps culminating in Gödel’s incompleteness theorems (1931). In view of
the clarifying contribution of this work, which may be classed under the broad heading
of foundations, and even before it, many presentations of analysis included at least
some discussion of the construction of the sets listed above along with their properties.
The extent to which this discussion should be pursued is largely a matter of taste
and may be said to vary between two extremes represented by two well-known texts.
In his 1951 book Foundations of Mathematical Analysis Edmund Landau concludes
on page 37 (well over one-third of the way through the book in Theorem 95) that for
X, Y, Z ∈ Q, if X > Y , then X +Z > Y +Z. It takes another thirteen pages until one
finds on page 50 the same conclusion for real numbers x, y, and z in Theorem 134,
though technically the result is only for certain “Dedikind cuts” x, y, and z which
are not identified with positive real numbers until page 69 (another 19 pages and over
half way through the book). At the other extreme one finds texts like Robert Bartle’s
1964 book The Elements of Real Analysis which says simply (on page 22): “We shall
assume familiarity with the set of natural numbers” and follows this up on page 27
with the enlightening statement that the construction of R from Q is “possible,”
but will not be presented. To be fair, Bartle does mention in a footnote that the
interested reader may find more information about the construction of numbers in
the 1960 book Naive Set Theory by Paul Halmos and gives, in fact, most of the ideas
for the construction of R from Q via Dedikind cuts in sections 6 and 7 of Chapter
2. It may be added that most people (and mathematicians too) find the books of
Landau and Halmos rather tedious, so while the line must be drawn somewhere, and
there is some itching feeling that people like Landau and Halmos seem to have had to

1See Timothy Chow’s paper The Consistency of Arithmetic from 2018 in The Mathematical

Intelligencer.
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tell students everthing they could about foundations (and I feel a little bit like that
myself), the urge is probably best resisted.

The text of Gunning may be said to take something of a middle road facilitated
especially in the construction of the reals R from the rationals Q (in an Appendix to
section 2.2) by the use of somewhat heavy handed abstraction. Namely, he builds up
the machinery of metric spaces and abstract Cauchy sequences first and then, rather
retrospectively, “defines” the real numbers as equivalence classes of Cauchy sequences
in Q (considered as a metric space). This is in contrast to, and bypasses completely,
the rather more direct approach involving Dedikind cuts. The overall presentation
may be criticized in several respects, but generally I think it’s not too bad. Let’s re-
turn to the natural numbers and start with some criticism there. Gunning introduces
the natural numbers as cardinalities of “formal symbols”

{/}, {/, /}, {/, /, /}, . . . (1)

This looks like set notation—it is identical to set notation, according to which
{/} = {/, /} = {/, /, /} = · · ·—which is, of course, not what he means. From there
Gunning basically says all the properties of the Peano Axioms are “evident” from (1).
I think this definitely borders on dishonesty. On the other hand, as hinted at by the
names of Gödel’s theorems, one is going to be forced here to take something on faith.
I prefer to be somewhat more honest about that and say:

1. Let’s assume there is a set.

You may need to go back and read that assumption again. I’m not saying to
assume the existence of any particular set...just some set, say A. Then there is
the specified set

φ = {x ∈ A : x 6= x}.

If you look in the book of Halmos, you’ll find something like an axiom of spec-

ification, and we’re using that here.2 This specified set φ is called the empty

set.

2. A minor modification of Gunning’s slashfest (1) is how I think of the natural

numbers:
0 = φ, 1 = {φ}, 2 = {0, 1} = {φ, {φ}}, . . . (2)

2You’ll also find a host of other axioms given by Halmos, of which it can be said “we are using
them,” but we will not say it. For example, There is an “Axiom of pairing” which says that every
two sets are elements of some set. We can take the two sets to both be the empty set and write {φ}
with confidence.
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The set N0 = {0, 1, 2, 3, . . .}, where each element (number) n+1 is a set obtained
according to the inductive rule

n + 1 = n ∪ {n},

will be assumed to exist and satisfy the Peano axioms. Gunning’s statement
of the Peano axioms seems just fine to me, but I’ll state them here just for
practice/repetition:

(a) There is a first element 0 ∈ N0.

(b) Every element n ∈ N0 has a successor n + 1 ∈ N0, and successors satisfy

i. n + 1 6= 0,

ii. n + 1 6= n, and

iii. If n + 1 = m + 1, then m = n.

(c) If E ⊂ N0 with 0 ∈ E and we know that

n ∈ E =⇒ n + 1 ∈ E,

then E = N0. This is called the principle of induction.

3. Nobody seems to have obtained/proved any two mutually contradictory asser-
tions involving the natural numbers yet...nor have any such statements involving
the other sets Z, Q, R and C constructed from them surfaced. So we’ll hope
for the best.

4. We’ll give a few details of the construction of these other sets in addition to (2)
which may serve as a kind of construction of N0 ⊃ N.

As a brief follow-up to Hilbert’s question and a somewhat contrarian view of Chow’s
paper, I think what Hilbert had in mind was starting with some very simple axiom or
axioms like our first assumption above (there exists a set). Then you get the empty
set, and (somehow) you prove consistency with respect to this (very simple) structure
within the structure itself. Part of the problem, I think, was that Hilbert didn’t have
the formal tools of logic nor understand those were necessary for such a program (now
known as Hilbert’s program) to be carried out. One way to view what eventually came
out in the incompleteness theorems of Gödel is that when you figure out the required
logical framework and the set theory, then (first of all) things do not get simpler,
they get more complicated and (second) though it is possible to state what it means
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for the resulting system to be consistent, it is impossible to prove consistency within
that system itself. Therefore, you are stuck assuming something—and not just a little
something.

To wind up these preliminary comments, I’ll list a few other well-known texts you
may wish to consult and compare:3

1. Advanced Calculus by R. Creighton Buck (1956)

2. Introduction to Analysis by Maxwell Rosenlicht (1968)

3. Principles of Mathematical Analysis by Walter Rudin (1976)

4. The Theory of Functions of a Real Variable by E.W. Hobson (1907)

5. Foundations of Modern Analysis by Jean Dieudonné (1969)

3I’ll try to put the first published date; there are likely newer editions. Incidentally, I’ve read
most of all of these and found them very influential.
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