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1 Max/Min and Sup/Inf

Throughout this discussion, let X be a partially ordered set. We are primarily inter-
ested in the examples X = Z and X = N which are totally ordered, but we will refer
to those sets when they are discussed in particular. Let us first recall some definitions
and perhaps introduce some new ones.

Definition 1 (upper bound) Given a set A ⊂ X, an element U ∈ X is an upper
bound for A (or an upper bound of A) if

a ≤ U for every a ∈ A.

If there exists an upper bound for A, then we say A is bounded above.

Exercise 1 Define what it means for ℓ ∈ X to be a lower bound for A ⊂ X and
what it means for A to be bounded below.

Definition 2 (maximum/minimum) Given A ⊂ X, an element M ∈ A is a maxi-
mum element of A if

a ≤ M for every a ∈ A.

Similarly, m ∈ A is a minimum element of A if

m ≤ a for every a ∈ A.

Exercise 2 If M is a maximum element of A, then M is unique, i.e., M is the
only maximum element in A. Similarly, if m ∈ A is a minimum element, then m is
unique.
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In view of the previous exercise, if M is a maximum element of A, we call M the
maximum element of A and write

M = maxA.

Similarly, if m is a minimum element of A, we call m the minimum element and write

m = min A.

Our primary objective is, perhaps, to prove the following result:

Theorem 1 If A ⊂ Z is nonempty and bounded above, then there is a unique element
M ∈ A with

M = maxA.

Similarly, If A is bounded below, then there is a unique m ∈ A with

m = min A.

In addition, we will discuss various related concepts and examples. While a maximum
or minimum element is unique, this may not be true of an upper or lower bound.

Exercise 3 Give examples of partially ordered sets X and subsets A ⊂ X satisfying
the following conditions:

1. A is bounded above but does not have a unique upper bound.

2. A is bounded above and does have a unique upper bound U , but U is not a
maximum element for A.

3. A is bounded above, does not have a unique upper bound, and has no maximum
element.

Nevertheless, something can be said in general.

Lemma 1 If A ⊂ X, then the following hold:

(a) If U ∈ X is an upper bound for A and U ∈ A, then U = maxA.

(b) If max A exists, then A is bounded above.

This result seems trivial, but don’t sell it short: We will use it in our main proof below.
A seemingly more substantial general assertion we will also use is the following:
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Lemma 2 Every nonempty finite subset of a totally ordered set has a maximum
element and minimum element.

Proof: Let A be a finite subset of a totally ordered set X. Our proof is by induction
on the number of elements in A. If A = {a} has only one element, then clearly that
element a has a = maxA = min A.

Assume we know any subset A ⊂ X has a maximum and minimum if #A ≤ k.
Consider a set S with #S = k + 1. Taking any particular element a ∈ S, we note
that #S\{a} = k. By the inductive hypothesis, there are elements

m = min S\{a} ∈ S\{a} and M = maxS\{a} ∈ S\{a}.

Letting N = max{M, a} and n = min{n, a}, which both exist because X is totally
ordered, it is easy to check that

n = min S and N = max S. �

This was relatively easy, though it did require induction. We could have used only
#A = k in the inductive hypothesis.

Exercise 4 Give an example of a partially ordered set X and a finite subset A ⊂ X

for which neither min A nor max A exist.

Definition 3 (least upper bound and greatest lower bound) An element U0 ∈ X is a
least upper bound of a set A ⊂ X if the following hold:

1. U0 is an upper bound of A, and

2. For every upper bound U of A, we have U0 ≤ U .

Similarly, ℓ0 is a least upper bound of A if

1. ℓ0 is a lower bound of A, and

2. For every lower bound ℓ of A, we have ℓ ≤ ℓ0.

Exercise 5 Least upper bounds and greatest lower bounds (when they exist) are unique.

In view of Exercise 5, we call any least upper bound U0 of a set A the least upper
bound of A or the supremum of A and write

U0 = sup A. (1)
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Similarly, we call any greatest lower bound ℓ0 of A the greatest lower bound of A or
the infemum of A and write

ℓ0 = inf A.

In most, but not quite all, situations the supremum of A is synonymous with the
least upper bound of A. Here is one important exception: If X = R and A ⊂ R is
not bounded above, we can (and will) write

sup A = ∞ or sup A = +∞.

In this instance sup A does not denote the least upper bound of A because there is no
(least) upper bound of A; the least upper bound of A does not exist. It is important
to note that with this standard usage,

The supremum of any subset of R exists in (−∞,∞].

Thus, sometimes sup A is an extended real number. Recall that (−∞,∞] =
R ∪ {∞} with

x < ∞ for every x ∈ R,
x + ∞ = ∞ for every x ∈ R, but
∞ has no additive inverse.

Sometimes, but very rarely, people write sup φ = −∞. (Notice I said the supremum
of any (!) subset of R exists.) If you say this, you’re usually talking about the
extended real number line [−∞,∞] (or at least [−∞,∞) = {−∞} ∪ R. There is no
sensible meaning of −∞ + ∞.

Returning to more reasonable considerations, we have the following:

Definition 4 X is said to be Dedekind complete if the following condition holds:

Whenever A ⊂ X is nonempty and bounded above, then A has a least
upper bound.

Exercise 6 Give three fundamentally different and interesting examples of totally
ordered sets which are not Dedekind complete.

Recall the fundamental fact:

R is Dedekind complete.

The condition
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Whenever A ⊂ X is nonempty and bounded above, then A has a least
upper bound.

is called the least upper bound property. We emphasize

R has the least upper bound property.

Exercise 7 If A ⊂ R is bounded below, then show that A has a greatest lower bound.
Formulate a greatest lower bound property for partially ordered sets.

In view of this discussion, we can restate our main result as

Theorem 2 Z and N are Dedekind complete. If fact, Z and N satisfy the stronger
condition:

Whenever A ⊂ X is nonempty and bounded above, then A has a maximum
element.

The condition

Whenever A ⊂ X is nonempty and bounded above, then A has a maxi-
mum element.

is called the maximum element property.1

2 Proof of the Theorem

Notice that since N ⊂ Z, we only need to consider X = Z. In fact, the assertion holds
for any subset X ⊂ Z. In addition to Lemmas 1 and 2, will also use the following
two results about the integers:

Lemma 3 If n1, n2 ∈ Z with n1 < n2, then there is some (unique) k ∈ N with

n2 = n1 + k.

Lemma 4 Given k ∈ Z, there is no integer m ∈ Z with k < m < k + 1.

1Really I just made this up. I’ve never heard of “the maximum element property” before.
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Proof of Theorems 1 and 2: Consider a set A ⊂ Z with A 6= φ and

a ≤ U ∈ Z for every a ∈ A.

Consider the set
B = {m ∈ Z : a ≤ m ≤ U for all a ∈ A}.

Notice that U ∈ B 6= φ. Let a1 ∈ A. If a1 = U , then a1 = maxA by Lemma 1 part
(a). Otherwise, a1 < U and we have by Lemma 3 some k ∈ N such that

a1 < a1 + 1 < a1 + 2 < · · · < a1 + k = U.

Furthermore, since any element n ∈ B satisfies n ≥ a1, we have

B ⊂ C = {a1, a1 + 1, a1 + 2, . . . , a1 + k = U}.

This means #B ≤ k + 1 and B is a finite set. By Lemma 2, we know B has a
minimum element

min B = U1 = a1 + j for some j ∈ {0, 1, 2, . . . , k}. (2)

We claim that U1 = a1 + j ∈ A so that

U1 = a1 + j = maxA. (3)

Assume (BWOC) that a1 + j ∈ B\A. Then consider a1 + j − 1. Notice that by
Lemma 4 there is no integer m with

a1 + j − 1 < m < a1 + j.

In particular, there is no element a ∈ A for which a1 + j − 1 < a ≤ a1 + j. Therefore,

a ≤ a1 + j − 1 ≤ U for all a ∈ A.

This implies a1 + j − 1 ∈ B contradicting the assertion of (2) that minB = a1 + j.
We have established (3) which means Z has the maximum element property.

The approach of Exercise 7 should apply to show Z has the minimum element
property as well, i.e., each nonempty subset of Z which is bounded below has a
minimum element. �

6


