The Completeness of the Integers

John McCuan

February 25, 2020

1 Max/Min and Sup/Inf

Throughout this discussion, let X be a partially ordered set. We are primarily interested in the examples $X = \mathbb{Z}$ and $X = \mathbb{N}$ which are totally ordered, but we will refer to those sets when they are discussed in particular. Let us first recall some definitions and perhaps introduce some new ones.

Definition 1 (upper bound) Given a set $A \subset X$, an element $U \in X$ is an **upper** bound for A (or an upper bound of A) if

$$a \leq U$$
 for every $a \in A$.

If there exists an upper bound for A, then we say A is bounded above.

Exercise 1 Define what it means for $\ell \in X$ to be a lower bound for $A \subset X$ and what it means for A to be bounded below.

Definition 2 (maximum/minimum) Given $A \subset X$, an element $M \in A$ is a maximum element of A if

 $a \leq M$ for every $a \in A$.

Similarly, $m \in A$ is a **minimum element** of A if

$$m \leq a$$
 for every $a \in A$.

Exercise 2 If M is a maximum element of A, then M is unique, i.e., M is the only maximum element in A. Similarly, if $m \in A$ is a minimum element, then m is unique.

In view of the previous exercise, if M is a maximum element of A, we call M the maximum element of A and write

$$M = \max A.$$

Similarly, if m is a minimum element of A, we call m the minimum element and write

 $m = \min A.$

Our primary objective is, perhaps, to prove the following result:

Theorem 1 If $A \subset \mathbb{Z}$ is nonempty and bounded above, then there is a unique element $M \in A$ with

 $M = \max A.$

Similarly, If A is bounded below, then there is a unique $m \in A$ with

 $m = \min A.$

In addition, we will discuss various related concepts and examples. While a maximum or minimum element is unique, this may not be true of an upper or lower bound.

Exercise 3 Give examples of partially ordered sets X and subsets $A \subset X$ satisfying the following conditions:

- 1. A is bounded above but does not have a unique upper bound.
- 2. A is bounded above and does have a unique upper bound U, but U is not a maximum element for A.
- 3. A is bounded above, does not have a unique upper bound, and has no maximum element.

Nevertheless, something can be said in general.

Lemma 1 If $A \subset X$, then the following hold:

(a) If $U \in X$ is an upper bound for A and $U \in A$, then $U = \max A$.

(b) If max A exists, then A is bounded above.

This result seems trivial, but don't sell it short: We will use it in our main proof below. A seemingly more substantial general assertion we will also use is the following: **Lemma 2** Every **nonempty finite** subset of a **totally** ordered set has a maximum element and minimum element.

Proof: Let A be a finite subset of a totally ordered set X. Our proof is by induction on the number of elements in A. If $A = \{a\}$ has only one element, then clearly that element a has $a = \max A = \min A$.

Assume we know any subset $A \subset X$ has a maximum and minimum if $\#A \leq k$. Consider a set S with #S = k + 1. Taking any particular element $a \in S$, we note that $\#S \setminus \{a\} = k$. By the inductive hypothesis, there are elements

$$m = \min S \setminus \{a\} \in S \setminus \{a\}$$
 and $M = \max S \setminus \{a\} \in S \setminus \{a\}.$

Letting $N = \max\{M, a\}$ and $n = \min\{n, a\}$, which both exist because X is totally ordered, it is easy to check that

$$n = \min S$$
 and $N = \max S$.

This was relatively easy, though it did require induction. We could have used only #A = k in the inductive hypothesis.

Exercise 4 Give an example of a partially ordered set X and a finite subset $A \subset X$ for which neither min A nor max A exist.

Definition 3 (least upper bound and greatest lower bound) An element $U_0 \in X$ is a least upper bound of a set $A \subset X$ if the following hold:

- 1. U_0 is an upper bound of A, and
- 2. For every upper bound U of A, we have $U_0 \leq U$.

Similarly, ℓ_0 is a least upper bound of A if

- 1. ℓ_0 is a lower bound of A, and
- 2. For every lower bound ℓ of A, we have $\ell \leq \ell_0$.

Exercise 5 Least upper bounds and greatest lower bounds (when they exist) are unique.

In view of Exercise 5, we call any least upper bound U_0 of a set A the least upper bound of A or the supremum of A and write

$$U_0 = \sup A. \tag{1}$$

Similarly, we call any greatest lower bound ℓ_0 of A the greatest lower bound of A or the infemum of A and write

$$\ell_0 = \inf A.$$

In most, but not quite all, situations the **supremum** of A is synonymous with the least upper bound of A. Here is one important exception: If $X = \mathbb{R}$ and $A \subset \mathbb{R}$ is **not bounded above**, we can (and will) write

$$\sup A = \infty$$
 or $\sup A = +\infty$.

In this instance $\sup A$ does not denote the least upper bound of A because there is no (least) upper bound of A; the least upper bound of A does not exist. It is important to note that with this standard usage,

The supremum of any subset of \mathbb{R} exists in $(-\infty, \infty]$.

Thus, sometimes $\sup A$ is an **extended real number**. Recall that $(-\infty, \infty] = \mathbb{R} \cup \{\infty\}$ with

 $x < \infty$ for every $x \in \mathbb{R}$, $x + \infty = \infty$ for every $x \in \mathbb{R}$, but ∞ has no additive inverse.

Sometimes, but very rarely, people write $\sup \phi = -\infty$. (Notice I said the supremum of **any** (!) subset of \mathbb{R} exists.) If you say this, you're usually talking about the extended real number line $[-\infty, \infty]$ (or at least $[-\infty, \infty) = \{-\infty\} \cup \mathbb{R}$. There is no sensible meaning of $-\infty + \infty$.

Returning to more reasonable considerations, we have the following:

Definition 4 X is said to be **Dedekind complete** if the following condition holds:

Whenever $A \subset X$ is nonempty and bounded above, then A has a least upper bound.

Exercise 6 Give three fundamentally different and interesting examples of totally ordered sets which are **not** Dedekind complete.

Recall the fundamental fact:

 \mathbb{R} is Dedekind complete.

The condition

Whenever $A \subset X$ is nonempty and bounded above, then A has a least upper bound.

is called the **least upper bound property**. We emphasize

 $\mathbb R$ has the least upper bound property.

Exercise 7 If $A \subset \mathbb{R}$ is bounded below, then show that A has a greatest lower bound. Formulate a greatest lower bound property for partially ordered sets.

In view of this discussion, we can restate our main result as

Theorem 2 \mathbb{Z} and \mathbb{N} are Dedekind complete. If fact, \mathbb{Z} and \mathbb{N} satisfy the stronger condition:

Whenever $A \subset X$ is nonempty and bounded above, then A has a maximum element.

The condition

Whenever $A \subset X$ is nonempty and bounded above, then A has a maximum element.

is called the **maximum element property**.¹

2 Proof of the Theorem

Notice that since $\mathbb{N} \subset \mathbb{Z}$, we only need to consider $X = \mathbb{Z}$. In fact, the assertion holds for any subset $X \subset \mathbb{Z}$. In addition to Lemmas 1 and 2, will also use the following two results about the integers:

Lemma 3 If $n_1, n_2 \in \mathbb{Z}$ with $n_1 < n_2$, then there is some (unique) $k \in \mathbb{N}$ with

$$n_2 = n_1 + k.$$

Lemma 4 Given $k \in \mathbb{Z}$, there is no integer $m \in \mathbb{Z}$ with k < m < k + 1.

¹Really I just made this up. I've never heard of "the maximum element property" before.

Proof of Theorems 1 and 2: Consider a set $A \subset \mathbb{Z}$ with $A \neq \phi$ and

 $a \leq U \in \mathbb{Z}$ for every $a \in A$.

Consider the set

$$B = \{ m \in \mathbb{Z} : a \le m \le U \text{ for all } a \in A \}.$$

Notice that $U \in B \neq \phi$. Let $a_1 \in A$. If $a_1 = U$, then $a_1 = \max A$ by Lemma 1 part (a). Otherwise, $a_1 < U$ and we have by Lemma 3 some $k \in \mathbb{N}$ such that

$$a_1 < a_1 + 1 < a_1 + 2 < \dots < a_1 + k = U.$$

Furthermore, since any element $n \in B$ satisfies $n \geq a_1$, we have

$$B \subset C = \{a_1, a_1 + 1, a_1 + 2, \dots, a_1 + k = U\}.$$

This means $\#B \leq k+1$ and B is a **finite set**. By Lemma 2, we know B has a minimum element

min
$$B = U_1 = a_1 + j$$
 for some $j \in \{0, 1, 2, \dots, k\}.$ (2)

We claim that $U_1 = a_1 + j \in A$ so that

$$U_1 = a_1 + j = \max A.$$
 (3)

Assume (BWOC) that $a_1 + j \in B \setminus A$. Then consider $a_1 + j - 1$. Notice that by Lemma 4 there is no integer m with

$$a_1 + j - 1 < m < a_1 + j$$
.

In particular, there is no element $a \in A$ for which $a_1 + j - 1 < a \leq a_1 + j$. Therefore,

$$a \le a_1 + j - 1 \le U$$
 for all $a \in A$.

This implies $a_1 + j - 1 \in B$ contradicting the assertion of (2) that min $B = a_1 + j$. We have established (3) which means \mathbb{Z} has the maximum element property.

The approach of Exercise 7 should apply to show \mathbb{Z} has the minimum element property as well, i.e., each nonempty subset of \mathbb{Z} which is bounded below has a minimum element. \Box