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In the construction of numbers for analysis, once one consents to the logical and
set theoretic “foundations,” such as they are, and constructs the set

N0 = {0, 1, 2, 3, . . .}

with 0 = φ, 1 = {φ} = {1} and so on, then there are usually three more steps or
constructions to get to the real numbers R. Having discussed equivalence relations,
groups, rings, fields and order relations, we may review some of the details of the
extensions. These may be represented diagramatically by

N0

ν0−→ Z
φ

−→ Q
γ

−→ R.

As mentioned in regard to our construction of N0, there are many important results in
arithmetic of the natural numbers (not to mention details in the construction itself)
which we will use without explicitly proving them. The same applies to the integers
Z. One should, hopefully, get the feeling that these results “can be proved” and have
some idea of “how the proof would go.” And, of course, one should prove some of
them—or as many as one can.

I have chosen the symbols1 ν0, φ, and γ as follows:

ν0 (the Greek letter “nu” pronounced “new”) for “negatives”

φ (the Greek letter “phi” pronounced “fee”) for “fractions”

γ (the Greek letter “gamma” pronounced “gam-ma”) for “complete”

It is possible to, and Gunning does, start with N = {1, 2, 3, . . .}. I think we will not
need to refer formally to the injection of N into N0 (or of N into Z) but if we do, we

1We could also take γ for “cuts” or δ for “Dedikind cuts” here, but we shall follow Gunning (who
followed Cantor) using the notion of Cauchy sequences and hence that of metric completeness.

1



can take ζ : N → N0 and ν : N → Z so that ν = ν0 ◦ ζ is the restriction of ν0 to
N ⊂ N0.

Generally speaking, especially at each stage of the construction, the sets N0, Z,
Q, R will consist of elements which may look unfamiliar and should be thought of
as quite different and distinct from the antecedent sets—because at each stage they
are quite different elements. Once the construction is accomplished, however, it is
customary to only consider the initial fundamental set, say N0, as a subset of the
newly constructed set, say Z. Furthermore, somewhat paradoxically, the actual form
of the constructed set Z is “forgotten” and the notation from the injected antecedent
set is adopted (at least to whatever extent possible) and extended as appropriate.
This comment should become clear after one or two of the constructions/extensions
have been explained.

Our objective here is to discuss/summarize some of the most important details
for the construction of Z from N0, that is the map ν0 : N0 → Z which appends the
negative integers to N0. The construction may be thought of in two steps

N0 → N0 × N0 → (N0 × N0)/ ∼= Z

where N0 × N0 = {(m, n) : m, n ∈ N0} is the Cartesian product and “∼” is a certain
equivalence relation. To be specific (m, n) ∼ (r, s) if m − n = r − s (but we are
not allowed to say this because we are limited to N0 and m − n = m + (−n) and
r − s = r + (−s) are not well-defined in N0 because N0, having no additive inverses,
is not a group). Thus, we say instead

(m, n) ∼ (r, s) ⇐⇒ m + s = n + r.

Therefore, elements of Z (integers) initially have the rather unappealing form

[(m, n)] = {(r, s) ∈ N0 × N0 : m + s = n + r}

with the integers n ∈ N0 taking the form

[(n, 0)],

or if you take Gunning’s approach, the even more cumbersome [(n + 1, 1)].
Here are the important results to prove:

Theorem 1 Z = (N0 × N0)/ ∼ is an additive group under the operation

[(m, n)] + [(r, s)] = [(m + n, r + s)]
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with additive identity
[(0, 0)] = [(1, 1)]

and for which the additive inverse of [(n, 0)] is [(0, n)].

Theorem 2 ν0 : N0 → Z is an injection by ν0(n) = [(n, 0)], and the “negative”
integers

{[(0, n)] : n ∈ N}

are disjoint from the positive integers ν0(N) and {[(0, 0)]} = {ν0(0)}, so that

{[(0, n)] : n ∈ N} ∪ {[(0, 0)]} ∪ {[(n, 0)] : n ∈ N}

is a partition of Z.

Theorem 3 Z is a ring with multiplication

[(m, n)][(r, s)] = [(m − n)(r − s), 0)] = [(mr + ns, ms + nr)]

the middle expression being “wrong” but equivalent to the last one. Furthermore,
ν0 : N0 → Z is a “bimonoid morphism” in the sense that

ν0(m + n) = ν0(m) + ν0(n), and

ν0(mn) = ν0(m)ν0(m) for all m, n ∈ N0.

Theorem 4 Z is an ordered ring based on the “set of positives” ν0(N), and ν0

preserves the ordinal ordering of N0 (by set inclusion):

n < m in N0 implies [(n, 0)] < [(m, 0)] in Z.

As mentioned above, once the construction is satisfactorily executed, the unap-
pealing notation of equivalence classes in Z is “forgotten” and we write n for ν0(n),
we write N for ν0(N), we write N0 for ν0(N0), and

−n for [(0, n)].

We also adopt the usual ring notation, so −(−n) for n ∈ N also makes sense.
Among the most important arithmetic results in N0 and Z is the division algo-

rithm. I state four versions.
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Theorem 5 (division algorithm in N) If m, n ∈ N and 0 < n < m, then there exist
unique natural numbers q ∈ N and r ∈ N0 such that

0 ≤ r < n and m = nq + r.

Theorem 6 (division algorithm in N0) If m, n ∈ N, then there exist unique natural
numbers q, r ∈ N0 such that

0 ≤ r < n and m = nq + r.

Theorem 7 (division algorithm in Z) If m ∈ Z\{0} and n ∈ N, then there exist
unique integers q ∈ Z and r ∈ N0 such that

0 ≤ r < n and m = nq + r.

Theorem 8 (general division algorithm in Z) If m, n ∈ Z\{0}, then there exist
unique integers q ∈ Z and r ∈ N0 such that

0 ≤ r < |n| and m = nq + r.

As you are no doubt aware (from second or third grade), in N and Z it is also useful
to have the notion of divisibility. If n, m ∈ N and there exists some q ∈ N such that
nq = m, (i.e., r = 0 in the division algorithm), then we say n divides m and write

n
∣

∣m. (1)

If m, n ∈ Z\{0} and there exists some q ∈ Z such that nq = m, (i.e., r = 0 in the
division algorithm), then we say n divides m and again write (1). If

1. q ∈ N,

2. q|m and q|n, and

3. Any integer which divides both m and n also divides q,

then we say q is the greatest common divisor of m and n.

Theorem 9 The greatest common divisor of two integers is always uniquely deter-
mined.
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An integer p ∈ N\{1} is called prime if its only divisors (in N) are 1 and p.
An integer p ∈ Z\{0,±1} is called prime if its only divisors are ±1 and ±p. Using
these notions and the division algorithm, one can prove the following results which
sometimes go under the name the fundamental theorem of arithmetic:

Theorem 10 (unique prime factorization in N) Given n ∈ N\{1}, there exist unique
prime numbers p1 < p2 < · · · < pk and unique powers a1, a2, . . . , ak such that

n =

k
∏

j=1

p
aj

j .

Theorem 11 (unique prime factorization in Z) Given n ∈ Z\{0,±1}, there exist
unique prime numbers 0 < p1 < p2 < · · · < pk and unique powers a1, a2, . . . , ak such
that one of the following holds:

n =

k
∏

j=1

p
aj

j or n = −

k
∏

j=1

p
aj

j , (2)

and exactly one of the conditions in (2) holds.

There is a general abstract algebraic development which extends these notions to
certain rings. The appropriate terms for you to look up if you want to learn about
this are ideals, prime ideals, and unique factorization domains (UFDs).
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