
Math 4317, Exam 1

1. (Assignment 1A Problem 9) Let E be any subset of the real numbers R and assume
u : E → R satisfies

u(x) ≤ u(y) for all x, y ∈ E with x < y.

In this case, we say u is monotone non-decreasing.

(a) Let x0 ∈ R be fixed. Show the set

V = {u(x) : x ∈ E and x > x0}

is bounded below but not necessarily bounded above. Note: To show V is
bounded below you need to show there is a real number ℓ such that ℓ ≤ v for
every v ∈ V . To show V is not necessarily bounded above means to give an explicit
example where V is not bounded above, i.e., there is no real number U such that
v ≤ U for every v ∈ V . The number ℓ is called a lower bound. The number U ,
were such a number to exist, is called an upper bound.

(b) The completeness of the real numbers implies that a nonempty set of real numbers
which is bounded below has a greatest lower bound, that is, a real number ℓ0
which is a lower bound such that ℓ0 ≥ ℓ for every lower bound ℓ. Does the set
V from the previous part of this problem necessarily have a greatest lower bound?
Note: If your answer is “yes,” then you should prove it. If your answer is “no,”
then you should give an example, i.e., counterexample.

(c) If the set V from the first part of this problem has a greatest lower bound, show
the set of lower bounds for V ,

A = {ℓ : ℓ ≤ v for all v ∈ V },

is bounded above.

(d) If the set V from the first part of this problem has a greatest lower bound ℓ0, show
the least upper bound U0 of the set A from the previous part satisfies U0 ≤ ℓ0.

Solution:

(a) The problem is incorrectly stated. If E ∩ {x : x ≤ x0} = φ, then it may be that
the set V is neither bounded above nor below. For example, if E = (0, 1) =
{x ∈ R : 0 < x < 1} with x0 = 0 and u(x) = 1/(1 − x) − 1/x, then the set
V = R.

If, however, E ∩ {x : x ≤ x0} contains a point x1, then u(x1) ≤ u(x) for every
x ∈ E and the set V is bounded below.

Alternative solution: The professor meant “x0 ∈ E” instead of “x0 ∈ R.” If
we know x0 ∈ E, then for every x ∈ E ∩ (x0,∞) = {x ∈ E : x > x0} we have
u(x0) ≤ u(x) by monotonicity. Therefore, u(x0) is a lower bound for V .



(b) The answer is “no” for a couple possible reasons. First of all, it could be that
V is empty. Here is an example of that: E = (−1, 0) = {x : −1 < x < 0} with
x0 = 0 and u(x) ≡ 0.

It could be that V is nonempty but the set V is not bounded below as in the
(counter) example from the first part.

If, however, we have as suggested before E ∩ {x : x ≤ x0} 6= φ, then E is
certainly bounded below. If we have, moreover, E ∩ {x : x > x0} 6= φ, then V
is nonempty and bounded below, so V will have a greatest lower bound.

Alternative solution: Assuming x0 ∈ E, the answer to this part is (still) “no”
because the set V , though bounded below, may be empty. As an example we
can take

E = (−∞, x0] = {x ∈ R : x ≤ x0} with u : (−∞, x0] → R by u(x) ≡ 1.

(c) If V has a greatest lower bound, this means V is nonempty and bounded below.
In particuar, E ∩ {x : x > x0} 6= φ. This means there is some x1 ∈ E ∩{x : x >
x0}, and for every lower bound ℓ of V , we must have ℓ ≤ u(x1). This means the
set

A = {ℓ : ℓ ≤ v for all v ∈ V }

is bounded above. We note, furthermore, that in this case, the greatest lower
bound ℓ0 of V , assumed to exist, has ℓ0 ∈ A. Thus A is nonempty.

Alternative solution: I don’t see much alternative here. You need to use the
fact that V 6= φ to get a point x ∈ E ∩ (x0,∞). Then A is bounded (above)
because ℓ ≤ u(x) for every ℓ ∈ A.

(d) As mentioned in the previous part, ℓ0 ∈ A. Furthermore, ℓ0 is the greatest lower
bound of V . This means ℓ ≤ ℓ0 for all ℓ ∈ A. Thus, ℓ0 is an upper bound for A
and ℓ0 ∈ A, which means ℓ0 is the maximum element in A. Thus, not only is it
the case that the least upper bound U0 of A exists and satisfies U0 ≤ ℓ0, but ℓ0
is the maximum of A and ℓ0 = U0.

Alternative solution: Assuming x0 ∈ E, we know from the previous part that
u(x0) and ℓ0 are both in A (though we may have u(x0) = ℓ0 as, for example,
when E = [x0,∞) = {x ∈ R : x ≥ x0} and u : [x0,∞) → R by u(x) ≡ 1). In
any case, we know A 6= φ. As in the previous part, we also know V 6= φ, and
for every v = u(x) ∈ V , we have

ℓ ≤ v for every ℓ ∈ A. (1)

This means, on the one hand, that A is bounded above, so the least upper bound
U0 of A exists.



On the other hand, (1) also holds for any v ∈ V which means every ℓ ∈ A is a
lower bound for V . Therefore, ℓ ≤ ℓ0 for every ℓ ∈ A because ℓ0 is the greatest
lower bound. This means ℓ0 is an upper bound for A and hence U0 ≤ ℓ0 because
U0 is the least upper bound of A.

Of course, as mentioned above, ℓ0 ∈ A, so we know ℓ0 ≤ U0 as well. That is,
U0 = ℓ0 = maxA.

(e) Finally, it might be nice to give an example where u(x0) < ℓ0 = U0. This would
be a discontinuity for u. We can take E = [x0,∞) = {x ∈ R : x ≥ x0} with

u(x) =

{

0, x = x0

1, x > x0.

The first part of this problem offers you, the student, a number of opportunities for
learning if you are able to take advantage of them. Some are easy and simple, and
some are, apparently, very difficult for most people. Most of the important things to
be learned here go well beyond the following very simple observations:

1. The empty set is bounded above and below.

2. Every nonempty set of real numbers which is bounded below has a greatest
lower bound.

These observations, of course, play a role. In an effort to point out some much more
important things, let me start with a traditional principle for taking math classes.

If the professor asks you to prove something that is true, then prove it.
If the professor asks you to prove something that is not true, figure out
what he meant or what is true, and prove that.

If we can move beyond the “traditional” point of view, there are other things to
learn. Nevertheless, this traditional statement contains a couple important points.
First, it can be very difficult to compose a correct statement in mathematics. Even
the professor can get it wrong, so:

It’s dangerous to trust “authority,” and doing so can blind you to things
that are pretty obvious.

It’s probably even harder to compose a correct statement without mathematics—or
about a subject that extends beyond mathematics—like anything in the real world.

The traditional statement also contains a certain element which says:



Nobody (even the professor) should take himself too seriously. Errors are
to be expected, and that’s okay.

The traditional statement has also, I think, some shortcomings. First of all, the
assumption that one can figure out the intention of the professor (or anyone else) is
a bit shaky.

Ambiguity and error in human communication is the rule and not the
exception.

Furthermore, the presumption that one can figure out what is true, though a nice
idea, should perhaps be tempered:

Humility and perspective are helpful doing mathematics. Again, there is
no reason to take things so seriously. It’s just a class. It’s just a test.

The lack of humility and perspective prevents most people, and even most mathe-
maticians, from doing mathematics. We have the opportunity to learn some things
and actually do some mathematics. Doing mathematics involves thinking about
things carefully, not trusting anything, and trying to understand what’s really going
on. Having well-defined, correctly stated, “problems” and “exercises” can make peo-
ple feel like they are doing mathematics, but ususally what they are doing is just,
more or less blindly, “jumping through hoops.” Jumping through hoops is not doing
mathematics.

Mathematics is really a difficult psychological discipline which contradicts almost all
of our conditioning as humans. We are conditioned to respect authority, to not think,
and feel satisfied when things “work” but we do not really understand what is going
on. It is really sad that most students and (mathematics) instructors think that the
nice feeling of accomplishment from jumping through hoops is learning rather than
the overwhelmed feeling of being confused, not understanding what is going on, and
struggling to figure it out.

Having said that, I think there is a place for just “assuming” one understands some-
thing, and pushing on to other considerations. This allows one to set aside some
(potentially confusing) details and consider other things which may make those de-
tails clearer. Getting bogged down in details is, at some point, to be avoided, and
skipping details sometimes, rather than being indicative of a lack of humility, can
offer an opportunity for even greater humility. This requires one to say: “I’m go-
ing to go on to try to understand what is going on over here based on the (false)
assumption that I really understand what has gone on over there.” As long as one
keeps in mind his ignorance, and does not make too serious a blunder based on it,
in particular, if one’s mathematics is restricted to a psychological activity with very
limited real world consequences, then hopefully one does not get in too much trouble.



And this brings me to my final observation concerning the role of humility in doing
mathematics.

As I have said, it is sad that doing mathematics and taking mathematics courses is
viewed by most people as “jumping through hoops,” i.e., solving carefully composed
and contrived problems and exercises. It is much worse when one views mathematics
as a “means to change the world.” This is what happens when one understands
just enough to bring about certain significant changes and outcomes (especially in
the real world) but does not fully understand what is going on and especially the
consequences of those changes. As long as mathematics remains a psychological
activity undertaken with adequte humility, then it doesn’t seem to cause too much
trouble. Probably the worst result is some wasted time, and that can be hard to
avoid sometimes under any circumstances. Unfortuntely, it is all too common to
confuse the mental gymnastics of mathematics with actual understanding of the real
world which should be acted upon. In particular, to identify mathematical concepts
with the physical world can be extremely dangerous. The classic example of this is
the modification of the nuclei of atoms, as it is currently understood. Based on this
we have nuclear bombs and so called nuclear “waste.” We did not all want those
things, but we all have them.

So here is a suggestion: If you think it’s a good idea to impose anything on someone
else based on your “understanding,” especially your understanding of mathematics,
then you probably don’t have enough humility to do mathematics.



2. (intervals; Assignment 1A Problem 10) A set I ⊂ R is an interval if we have x, y ∈ I
with x < y, then we must have

[x, y] = {ξ ∈ R : x ≤ ξ ≤ y} ⊂ I.

Show that every interval has exactly one of the following ten forms:

φ

(−∞,∞) = R
(−∞, b) = {x ∈ R : x < b}

(−∞, b] = {x ∈ R : x ≤ b}

(a,∞) = {x ∈ R : x > a}

[a,∞) = {x ∈ R : x ≥ a}

(a, b) = {x ∈ R : a < x < b}

[a, b) = {x ∈ R : a ≤ x < b}

(a, b] = {x ∈ R : a < x ≤ b}

[a, b] = {x ∈ R : a ≤ x ≤ b}

Hint: Either an interval is bounded below—or it is not. They key is to find the numbers
a and/or b.

Solution: First note that the empty set φ is an interval. For every pair of points
x < y in the empty set, one definitely has [x, y] ⊂ φ. Thus, if I is an interval, one
possibility is I = φ.

In fact, each of the ten sets listed is an interval. This is obvious for R. It is almost as
obvious for the other eight sets. Take, for example, (a, b). If x < y and a < x < y < b,
then each ξ ∈ [x, y] satisfies

a < x ≤ ξ ≤ y < b,

so ξ ∈ (a, b). Thus, [x, y] ⊂ (a, b), and we know (a, b) is an interval. If we consider
[a, b), then whenever x < y with a ≤ x < y < b, then each ξ ∈ [x, y] satisfies

a ≤ x ≤ ξ ≤ y < b.

Again, [x, y] ⊂ [a, b) which shows that [a, b) is an interval. The arguments showing
the other six sets are intervals are very similar. It remains to show these are the only
ten possibilities.

If I is not empty, then either I is bounded below, or it is not. Assuming, from here
on, that I is not empty, let us consider the case that I is not bounded below.

Claim 1a: If I is not bounded below or above, then I = R.



To see this, start with x0 ∈ I. For any x ∈ R either x < x0, x = x0, or x0 < x. This
is because R is a totally ordered ring. In the first case, because I is not bounded
below, there is some x1 ∈ I with x1 ≤ x. It follows that x ∈ [x1, x0] ⊂ I. If x = x0,
then clearly x ∈ I. If x0 < x, then because I is not bounded above, there is some
x1 ∈ I with x1 ≥ x. Thus, x ∈ [x0, x1] ⊂ I. We have shown that x ∈ I for every
x ∈ R and, hence, I = R. The claim is established. 2

Claim 1b: If I is not bounded below but I is bounded above, then I = (−∞, b) or
I = (−∞, b] where b is the least upper bound of I.

Since I is nonempty and bounded above, there is a well-defined least upper bound
b. If x ∈ I, then x ≤ b, since b is an upper bound for I. This means

I ⊂ (−∞, b] = {x ∈ R : x ≤ b}.

If b ∈ I, then for any x < b, we know there is some x1 ≤ x with x1 ∈ I. This
is because I is not bounded below. Then x ∈ [x1, b] ⊂ I, and we have shown
(−∞, b] ⊂ I. Therefore, I = (−∞, b]. If b /∈ I, then for any x < b, we still know
there is some x1 ≤ x with x1 ∈ I. Again, this is because I is not bounded below.
On the other hand, there is some x2 ∈ I with x ≤ x2 < b. Otherwise, x would be
an upper bound for I contradicting the fact that b is the least upper bound of I.
Therefore, x ∈ [x1, x2] ⊂ I, and we have shown (−∞, b) ⊂ I. Since b /∈ I, we know
also that I ⊂ (−∞, b), and the claim is established. 2

Thus, there are three possibilities when I is not bounded below and nonempty:

I = R, I = (−∞, b), and I = (−∞, b].

Similarly, there are three possibilities when I is nonempty and not bounded above.
One of them is I = R of course. The other two possibilities occur when I is bounded
below and are

I = (a,∞) and I = [a,∞)

where a is the greatest lower bound of I. The claims (say Claim 2a and Claim 2b)
and proofs associated with these claims are very similar to those above.

We have six possibilites for I so far. Furthermore, we only need to consider the case
when I is nonempty and bounded above and below. In this case, let a be the greatest
lower bound of I and b the least upper bound of I. Clearly, if x ∈ I, then x ≤ b and
x ≥ a. This means I ⊂ [a, b].

There are, of course, four remaining possibilities:

Claim 3a: If a ∈ I and b ∈ I, then I = [a, b].

Claim 3b: If a ∈ I and b /∈ I, then I = [a, b).

Claim 3c: If a /∈ I and b ∈ I, then I = (a, b].

Claim 3d: If a /∈ I and b /∈ I, then I = (a, b).



The proofs are similar. Take Claim 3b. If x ∈ [a, b), then there is some x1 ∈ I with
x ≤ x1 < b. Otherwise, x would be an upper bound for I contradicting that b is the
least upper bound of I. By the property of intervals, we have x ∈ [a, x1] ⊂ I. Thus,
[a, b) ⊂ I. On the other hand, b /∈ I, so I ⊂ [a, b), and the claim is established.
2

For the next two problems below, assume u : I → R is a monotone non-decreasing
function defined on an interval I. You may use the following fact and definition: If the
least upper bound U0 of u((−∞, x0)) and the greatest lower bound ℓ0 of u((x0,∞)) both
exist, then

U0 ≤ u(x0) ≤ ℓ0. (2)

Defintion If x0 ∈ I and at least one of the inequalities in (2) is strict, we say x0 is
a point of discontinuity of the monotone non-decreasing function u. Note: This
definition does not require that both numbers U0 and ℓ0 exist.

3. (Assignment 1A Problem 12) Assume u : I → R is a monotone non-decreasing function
defined on an interval I.

(a) If x0 ∈ I, when is it possible that neither the least upper bound U0 of u((−∞, x0))
nor the greatest lower bound ℓ0 of u((x0,∞)) exist?

(b) If x0 ∈ I is a point of discontinuity of u, what are the possible relations between
U0, ℓ0, and u(x0)?

Solution:

(a) If the set (−∞, x0) ∩ I is nonempty, then u((−∞, x0)) 6= φ, and for every
v = u(x) ∈ (−∞, x0) we have v = u(x) ≤ u(x0) by monotonicity. Thus,
u((−∞, x−)) is a nonempty subset of R which is bounded above. The complete-
ness of the real numbers then implies U0 exists.

We conclude that if U0 does not exist, then the set (−∞, x0) ∩ I is empty. In
particular, this means

I ⊂ [x0,∞).

A very similar argument shows the following:

If ℓ0 does not exist, then I ⊂ (−∞, x0].

Combining these two observations, we conclude that the only situation in which
neither U0 nor ℓ0 exist is when

I ⊂ (−∞, x0] ∩ [x0,∞) = {x0}.



Since we know x0 ∈ I, this means I = [x0, x0] = {x0} must be a singleton if
x0 ∈ I 6= φ, and in this case neither U0 nor ℓ0 exist. So, the answer is “yes.”
It is possible that neither U0 nor ℓ0 exist, and it happens precisely when I is a
singleton. Furthermore,

If U0 does not exist, then I ⊂ [x0,∞),

and

if ℓ0 does not exist, then I ⊂ (−∞, x0].

(b) Here we are apparently assuming U0 and ℓ0 both exist which means, by the
reasoning of the previous part, there are elements a and b in I with a < x0 < b
(and of course [a, b] ⊂ I). We already know (or should know) that

U0 ≤ u(x0) ≤ ℓ0 (3)

and to have a discontiuity in this context means one of the inequalities in (3) is
strict. Thus, nominally, there are three cases:

1. U0 < u(x0) ≤ ℓ0,

2. U0 ≤ u(x0) < ℓ0,

3. U0 < u(x0) < ℓ0.

We need to show by example that each of these three cases is non-vacuous. For
each of the three examples, I will take I = (−1, 1) and x0 = 0.

1. If we set

u(x) = χ[0,1)(x) =

{

1, x ≥ 0
0, x < 0,

then U0 = 0 < u(x0) = 1 = ℓ0. Here is an illustration of the graph of this
monotone function:

The graph is defined as the set {(x, u(x)) : x ∈ I} ⊂ R2.

In this case, u((−∞, x0)) = u((−∞, 0)) = {0} and u((0,∞)) = {1}.



2. If we set

u(x) = −χ(−1,0](x) =

{

−1, x ≤ 0
0, x > 0,

then U0 = −1 = u(x0) < 0 = ℓ0. Here is an illustration of the graph of
this monotone function:

In this case, u((−∞, x0)) = u((−∞, 0)) = {−1} and u((0,∞)) = {0}.

3. Finally, if we set

u(x) = −χ(−1,0)(x) + χ(0,1)(x) =







−1, x < 0
0, x = 0,
1, x < 0,

we obtain a monotone non-decreasing function with

U0 = −1 < 0 = u(x0) < 1 = ℓ0.

In this case, u((−∞, x0)) = {−1}, u((x0,∞)) = {1}, and of course u(x0) =
u(0) = 0.



4. (Assignment 1A Problem 13) Assume u : I → R is a monotone non-decreasing function
defined on an interval I. Show the set of discontinuities of u is (at most) countable.

Solution: Let ID denote the collection of discontinuities x0 for which there exist real
numbers a, b ∈ I with a < x0 < b. We can call these interior or nice discontinuties.
We know that for these discontinuities u((−∞, x0)) is bounded above and nonempty
and u((x0,∞)) is bounded below and nonempty. In particular, U0 and ℓ0 both exist
for such a discontinuity and the definition of discontinuity gives us

U0 < ℓ0. (4)

Let IE be the collection of all other discontinuities, i.e., discontinuities for which
either U0 does not exist or ℓ0 does not exist. As we have seen in the previous
problem, if x0 ∈ IE , then either

I ⊂ [x0,∞) or I ⊂ (−∞, x0].

We claim there can be at most two such discontinuties. In fact, there can be at most
two such points in I period. If there were three such points x1, x2, x3 ∈ IE , then we
would have (without loss of generality for the ordering)

x1 < x2 < x3.

But this is an immediate contradiction because the definition of an interval tells us
[x1, x3] ⊂ I, which means U0 and ℓ0 are well-defined real numbers for x0 = x2, and
if there is a discontinuity at x2, then x2 ∈ ID.

Thus, if we can show ID is countable, then we know the collection of all discontinuities
ID ∪ IE is countable. To show this, it is enough to obtain an injection f : ID → Q
from the set of (interior) discontinuities into the rational numbers. Let x ∈ ID and
let U0(x) be the least upper bound of u((−∞, x)). Also, let ℓ0(x) be the gretest lower
bound of u((x0,∞)). Each interval (U0(x), ℓ0(x)) is nonempty. Furthermore, because
the real numbers is an Archimedean field, there is a rational number in every such
interval. That is (U0(x), ℓ0(x)) ∩ Q 6= φ. Therefore, by the axiom of choice, there
exists a function

f : ID →
⋃

x∈ID

[(U0(x), ℓ0(x)) ∩ Q] with f(x) ∈ (U0(x), ℓ0(x)) ∩ Q for every x ∈ ID.

We need only show that f is an injection. Assume x1, x2 ∈ ID with x1 < x2. Then

U0(x1) < f(x1) < ℓ0(x1) and U0(x2) < f(x2) < ℓ0(x2).

Consider (x1, x2) ⊂ I and

x∗ = (x1 + x2)/2 ∈ (x1, x2) = (−∞, x2) ∩ (x1,∞)



in partiucular. Note that ℓ0(x1) is a lower bound for u((x1,∞)), and U0(x2) is an
upper bound for u((−∞, x2)). Therefore,

f(x1) < ℓ0(x1) ≤ u(x∗) ≤ U0(x2) < f(x2).

This means f(x1) < f(x2) and, in particular, f(x1) 6= f(x2), so f : ID → Q is
injective. 2

5. (Assignment 1B Problem 4) A function φ : G1 → G2 from one group G1 to another G2 is
a homomorphism if φ(ab) = φ(a)φ(b) for every a, b ∈ G1. A bijective homomorphism
is called a group isomorphism, and two groups with a group isomorphism between
them are said to be isomorphic groups.

(a) Show that the kernel, ker(φ) = {a ∈ G1 : φ(a) = e} = φ−1(e) where e is the identity
element in G2, of a homomorphism and the image, im(φ) = {φ(a) : a ∈ G1} =
φ(G1), of a homomorphism are subgroups of the groups G1 and G2 respectively.

(b) If H is a subgroup of a group G, one can consider the left cosets of H given by

aH = {ah : h ∈ H} ⊂ G

and the right cosets Ha = {ha : h ∈ H} ⊂ G. A subgroup H is called normal if
aH = Ha for every a ∈ G. If H is a normal subgroup of G, then show the set of all
(left) cosets G/H = {aH : a ∈ G} with operation (aH)(bH) = (ab)H is a group.
This group G/H is called the quotient group of G by (the normal subgroup) H .

(c) Show the kernel of a homomorphism is always a normal subgroup.

(d) If φ : G1 → G2 is a homomorphism, then show im(φ) and G1/ker(φ) are isomorphic
groups. This is called the first homomorphism theorem.

Solution:

(a) In order to show a subset of a group, like ker(φ) ⊂ G1, is a subgroup, I need
to show the identity element is in the subset, the subset is closed under the
operation, and the subset contains the inverse of each of its elements. Here is
the verification for ker(φ):

1. (identity element) Let e1 denote the identity in G1 and e2 the identity in
G2. Let b = φ(e1), and then we know there is an inverse element b−1 in
G2. Note that φ(e1)φ(e1) = φ(e1e1) = φ(e1). Thus, multiplying by b−1 on
both sides, we get

φ(e1) = bb−1 = e2.

This means e1 ∈ ker(φ).



2. (closure) Consider a, b ∈ ker(φ). Then we know φ(a) = e2 and φ(b) = e2.
We want to show ab ∈ ker(φ). In fact,

φ(ab) = φ(a)φ(b) = e2e2 = e2.

This means ab ∈ ker(φ).

3. (inverses) Consider a ∈ ker(φ). Then φ(a) = e2. Also,

e2 = φ(e1) = φ(aa−1) = φ(a)φ(a−1) = e2φ(a−1) = φ(a−1).

Thus, φ(a−1) = e2, and e2 ∈ ker(φ).

We have shown ker(φ) is a subgroup of G1.

We next show im(φ) = {φ(x) : a ∈ G1} is a subgroup of G2.

1. (identity element) In fact, we have shown above that φ(e1) = e2, so this
means e2 ∈ im(φ).

2. (closure) Consider φ(a), φ(b) ∈ im(φ). Then

φ(a)φ(b) = φ(ab) ∈ im(φ).

3. (inverses) Consider φ(a) ∈ im(φ). Note that φ(a−1) ∈ im(φ) as well. Also,

φ(a)φ(a−1) = φ(aa−1) = φ(e1) = e2

and
φ(a−1)φ(a) = φ(a−1a) = φ(e1) = e2.

This means
[φ(a)]−1 = φ(a−1) ∈ im(φ).

We have shown im(φ) is a subgroup of G2.

(b) 1. (well-defined operation) We will first show that the operation

(aH)(bH) = abH

on left cosets is well defined. Say aH = ãH and bH = b̃H . Then we need
to show abH = ãb̃H . Let abh ∈ abH with h ∈ H . Since bH = b̃H , there is
some h̃ ∈ H with bh = b̃h̃. Thus,

abh = ab̃h̃.

Since the group is normal, there is some ĥ ∈ H such that b̃h̃ = ĥb̃. Thus,

abh = aĥb̃.



Since aH = ãH , we have some ȟ ∈ H for which aĥ = ãȟ.

abh = ãȟb̃.

Finally, since H is a normal subgroup, we have ȟb̃ ∈ b̃h̆ for some smiling
h̆ ∈ H , and

abh = ãb̃h̆ ∈ ãb̃H.

We hae shown abH ⊂ ãb̃H . The reverse inclusion follows by an exchange
of accents.

This means the operation is well-defined.

2. (associativity) In order for the cosets G/H to be a group, we need the
operation to be associative. This follows almost immediately from the fact
that the operation in G is associative:

(aH bH)cH = abH cH = (ab)cH = a(bc)H = aH bcH = aH(bH cH).

3. (identity) The identity in G/H is clearly H = eH where e is the identity
in G. In fact,

H aH = eH aH = eaH = aH = aeH = aH H.

4. (inverses) The inverses in G/H are equally obvious:

aH a−1H = aa−1H = eH = a−1aH = a−1H aH.

We have shown that G/H is a group.

(c) Here we want to show the kernel of a homomorphism φ : G1 → G2 is a normal
subgroup of G1. To see this, let H = ker(φ) and consider aH . If ah ∈ aH , then
we know φ(h) = e2 is the identity in G2. Also, we can write

ah = aha−1a

and

φ(aha−1) = φ(a)φ(h)φ(a−1) = φ(a)e2φ(a−1) = φ(a)φ(a−1) = φ(e1) = e2.

Therefore, ah = ĥa with ĥ = aha−1 ∈ ker(φ) = H . Thus, aH ⊂ Ha.

Similarly, if ha ∈ Ha, then ha = aa−1ha = a(a−1ha) = aĥ with ĥ = a−1ha. It
is clear that ĥ ∈ ker(φ), so ha ∈ aH and Ha ⊂ aH .

We have shown H = ker(φ) is a normal subgroup in G1.



(d) We need to find an isomorphism ψ : G1/ker(φ) → im(φ). Let H = ker(φ) as
above and set G = G1 and I = im(φ). We define ψ : G/H → I by

ψ(aH) = φ(a).

1. (well-defined) We need to show the function ψ is well-defined. If aH = ãH ,
then there is some h ∈ H = ker(φ) with a = ãh. Therefore,

φ(a) = φ(ãh) = φ(ã)φ(h) = φ(ã)e2 = φ(ã).

This shows ψ is well-defined.

2. (homomorphism) We need to show ψ is a group homomorphism.

ψ(aHbH) = φ(ab) = φ(a)φ(b) = ψ(aH)ψ(bH).

3. (injective) We need to show ψ is injective. If ψ(aH) = ψ(bH), then

φ(a) = φ(b). (5)

This means that if ah ∈ aH , then ah = bb1ah. Now, we claim ĥ = b−1ah ∈
H . In fact, using (5)

φ(b−1ah) = φ(b−1)φ(a) = φ(b−1)φ(b) = φ(e1) = e2.

Therefore, ah = bĥ ∈ bH , and we have shown aH ⊂ bH .

The fact that bH ⊂ aH now follows by exchanging the symbols a and b in
the argument. Thus, aH = bH , and ψ is injective.

4. (surjective) It remains to show ψ is surjective, but this is immediate since
given any φ(a) ∈ I = im(φ), we have

ψ(aH) = φ(a).


