Continuity and Uniform Continuity

John McCuan

March 4, 2020

Can you complete the following tasks?

1 Uniform Continuity

Starter 1 Define what it means for a function $f : \mathbb{R} \to \mathbb{R}$ to be continuous at a point $x_0 \in \mathbb{R}$.

Problem 1 Show that the function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ is continuous at $x_0 = 5$.

Starter 2 Let $[0,1] = \{x : 0 \le x \le 1\}$ denote the closed unit interval in \mathbb{R} and let $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ denote the open unit interval in \mathbb{R} .

- 1. Define what it means for a function $f:[0,1] \to \mathbb{R}$ to be continuous.
- 2. Define what it means for a function $f : (0,1) \to \mathbb{R}$ to be uniformly continuous.
- **Problem 2** 1. Give an example of a function $f : (0,1) \to \mathbb{R}$ which is continuous but not uniformly continuous.
 - 2. Prove that any function $f:[0,1] \to \mathbb{R}$ which is continuous is uniformly continuous.

Starter 3 Define what it means for a function $f: (0,1) \to \mathbb{R}$ to be bounded.

Problem 3 Give an example of a function $f : (0,1) \to \mathbb{R}$ which is bounded and continuous but not uniformly continuous.

Starter 4 Define what it means for a subset of \mathbb{R} to be compact.

Problem 4 Show that any function $f : K \to \mathbb{R}$ which is continuous on a compact subset K of \mathbb{R} is uniformly continuous on K.