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This is the material of a lecture. It’s all arguably pretty important. It is important
if you want to learn analysis.

1 Continuity

We recall that a function f : X → Y , where X and Y are metric spaces with distance
functions dX and dY respectively, is continuous at x0 ∈ X if the following is satisfied:

For any ǫ > 0, there is some δ > 0 such that for x ∈ X,

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ǫ.

A function is continuous on X if f is continuous at each point x0 ∈ X.
In particular, if we take f : E → R where E ⊂ R and we use the Euclidean

metric given by the absolute value, d(x, y) = |x − y| in both the domain and the
codomain, then the continuity condition may be written as

For any ǫ > 0, there is some δ > 0 such that

|x − x0| < δ
x ∈ E

}

=⇒ |f(x) − f(x0)| < ǫ.

One needs some strong “feel” for how this definition works. If the following examples
are considered carefully, then maybe they can help one develop that “feel.” Please
pay close attention to each one.
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1.1 First Example

f : R → R by f(x) = x2 is continuous. Let x0 ∈ R. Then

|x2 − x2
0| = |x − x0||x + x0| ≤ |x − x0|(|x − x0| + 2|x0|).

Therefore, given ǫ > 0, if

|x − x0| < δ = min

{

ǫ

4|x0|
, |x0|

}

, (1)

then

|x2 − x2
0| <

ǫ

4|x0|
(|x0| + 2|x0|) =

3ǫ

4
< ǫ,

so it looks like we get continuity. Note that δ depends on x0. We can indicate this
by writing δ = δ(x0) or δ = δx0

.

1.2 Second Example

g : (0,∞) → R by g(x) = 1/x is continuous. Let x0 ∈ (0,∞). Then for x ∈ (0,∞),

∣

∣

∣

∣

1

x
−

1

x0

∣

∣

∣

∣

=
|x − x0|

xx0
.

Also, |x| ≥ |x0| − |x − x0| which we can also write as x ≥ x0 − |x − x0|.
Therefore, given ǫ > 0, if

|x − x0| < δ = min

{

ǫ|x0|
2

4
,
|x0|

4

}

, (2)

then
∣

∣

∣

∣

1

x
−

1

x0

∣

∣

∣

∣

= |x − x0|
1

xx0

≤
ǫ|x0|

2

4

1
(

|x0| −
|x0|
4

)

x0

=
ǫ|x0|

2

4

4

3x2
0

< ǫ.

Again, we have shown continuity, and again δ depends on x0.
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1.3 Uniform Continuity

Roughly speaking, if the value of δ can be chosen without dependence on the point x0,
then a continuous function is uniformly continuous. Here is the precise definition:

A function f : X → Y between metric spaces (X, dX) and (Y, dY ) is uniformly

continuous on X if the following holds:

For any ǫ > 0, there is some δ > 0 such that for every x, ξ ∈ X

dX(ξ, x) < δ =⇒ dY (f(ξ), f(x)) < ǫ.

Exercise 1 If f : X → Y is uniformly continuous, then f is continuous (at each
point of X).

Example of Nonuniform Continuity

f : R → R by f(x) = x2 is not uniformly continuous.
Proof: Assume (BWOC) there is some δ > 0 such that

|ξ2 − x2| < 1 whenever |ξ − x| < δ.

Consider x = n and ξ = n + δ/2 where n ∈ N. Then

|ξ2 − x2| =

∣

∣

∣

∣

nδ +
δ2

4

∣

∣

∣

∣

> nδ.

This means nδ < 1 for δ fixed and n ∈ N. In other words,

n <
1

δ
for all n ∈ N.

We have shown 1/δ is an upper bound for N contradicting the Archimedean property
of R. �

Example of Uniform Continuity

Let a, b ∈ R with a < b. Then f : [a, b] → R by f(x) = x2 is uniformly continuous.
This gives us an opportunity to look back at our proof that f : R → R by f(x) = x2

is continuous. We need to see if we can somehow find a value of δ which is smaller
than all the values

δx0
= min

{

ǫ

4|x0|
, |x0|

}

.
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This consideration should lead us rather quickly to the disturbing realization that our
argument for the continuity of x2 on R was wrong, for of course, when x0 = 0, the
“number” δx0

we have written down is either zero, since the second number |x0| = 0,
or just nonsense. Either way, we have not written down a positive number δ in this
case as required by the definition. We had better fix this up. It’s not a very serious,
much less fatal, error for our proof:

δx0
= min

{

ǫ

4(|x0| + 1)
, |x0| + 1

}

.

Now we are not dividing by zero and we won’t have δ = 0 either. With this choice

|x2 − x2
0| = |x − x0||x + x0| ≤

ǫ

4(|x0| + 1)
(|x0| + 1 + |x0|) < ǫ.

So, now we have really proved that f : R → R by f(x) = x2 is continuous.
Moreover, it makes sense to try to consider

min {δx0
: x0 ∈ [a, b]} = min

{

min

{

ǫ

4(|x0| + 1)
, |x0| + 1

}

: x0 ∈ [a, b]

}

.

In fact, if x0 ∈ [a, b], then a ≤ x0 ≤ b, and it’s relatively easy to see that |x0| ≤ α =
max{|a|, |b|} which is positive and independent of x0. Thus, we can take

δ =
ǫ

4α
independent of ξ and x

and have that if ξ, x ∈ [a, b] with |ξ − x| < δ, then

|ξ2 − x2| = |ξ − x||ξ + x| ≤
ǫ

4α
(|ξ| + |x|) < ǫ.

Exercise 2 Why doesn’t this “easier” proof of continuity work for f : R → R by
f(x) = x2?

A Second Example

Given a > 0, the function g : [a,∞) → R by g(x) = 1/x is uniformly continuous.
Proof: Again we can look back at our proof on the larger domain and think about
the value of δ = δx0

we used there, namely,

δx0
= min

{

ǫx2
0

4
,
x0

4

}

.
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This suggests

min{δx0
: x0 ≥ a} = min

{

min

{

ǫx2
0

4
,
x0

4

}

: x0 ≥ a

}

≥ min

{

ǫa2

4
,
a

4

}

.

In fact, setting δ = min{ǫa2, a}/4, we have

|g(ξ) − g(x)| =
|ξ − x|

ξx
≤

ǫa2

4

1

a2
< ǫ.

Note: We could have taken simply δ = ǫa2/2. �

Exercise 3 g : (0,∞) → R by g(x) = 1/x is not uniformly continuous.

Solution: Assume (BWOC) there exists some δ > 0 such that

ξ, x > 0
|ξ − x| < δ

}

=⇒ |g(ξ)− g(x)| < 1.

Consider ξ = 1/(2n) and x = 1/n for n ∈ N with n > 1/(2δ). Then

|ξ − x| =
1

2n
< δ.

But
|g(ξ) − g(x)| = n for all large enough n.

This time we have shown n < 1 so that N is strictly bounded above by 1, which is
just nonsense. �
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2 A Theorem

Let a, b ∈ R with a < b.

Theorem 1 If f : [a, b] → R is continuous, then f is uniformly continuous. That
is a continuous real valued function on a closed and bounded interval is uniformly
continuous.

Proof: This is going to be a long drawn out proof with lots of discussion, so pull up
a chair (and get out a pencil). Let ǫ > 0. Recall that by continuity we have, for each
x ∈ [a, b] some δx > 0 such that

|ξ − x| < δx

ξ ∈ [a, b]

}

=⇒ |f(ξ) − f(x)| < ǫ. (3)

This says there is an open interval (x − δ, x + δ) where we can get some useful
continuity condition as indicated in Figure 1. Actually, Figure 1 doesn’t illustrate

Figure 1: A δ ball with center x and radius δ.

much of anything about the continuity condition, but it illustrates the open interval
in the domain that one gets from the continuity condition, and that is what we need
to focus on for a while.

Recall that in a metric space X, given r > 0 and x0 ∈ X, a set of the form

Br(x0) = {x ∈ X : d(x, x0) < r}

is called the open ball of radius r and center x0. We’re going to use this notation
and terminology here, so our open interval becomes

(x − δx, x + δx) = Bδx
(x).

Now, we recall from the discussion/examples above that when we want uniform con-
tinuity, we basically want to find a minimum value for the tolerances δ we use:

min{δx : x ∈ [a, b]}.
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In this case, that looks rather hopeless. First of all because there are infinitely many
of these δx tolerances and, even more, because we have no idea how they depend on
x or f or anything.

The following approach may not be obvious, but once I suggest it, I think you’ll
see it makes a lot of sense:

If we had only finitely many values δx, then we could easily take the min-
imum.

Now which finitely many we want is also not so obvious, but we should have at least
enough so that all the points ξ ∈ [a, b] are included in their union. The following
turns out to be (roughly) the right thing:
Claim: It only takes finitely many open balls Bδx

(x) to cover [a, b].
A collection of open sets {Uα}α∈Γ is an open cover (or just a cover) of a set A if

A ⊂
⋃

α∈Γ

Uα.

Proof of the claim:1 Assume (BWOC) that no finite subcollection

{Bδx1
(x1), Bδx2

(x2), . . . , Bδxk
(xk)} of the open cover {Bδx

(x)}x∈[a,b]

covers [a, b]. Okay, now we do some interval bisection.2 If there is no finite subcover
of [a, b], then there is not finite subcover of one of the two intervals

[

a,
a + b

2

]

and

[

a + b

2
, b

]

. (4)

If these subintervals, each of which is clearly covered by {Bδx
(x)}x∈[a,b], both admitted

finite subcovers, then we would have a finite subcover of the entire interval [a, b]. Let
I1 be one of the intervals in (4) with no finite subcover. Then we can repeat the
argument: One closed half interval I2 of I1 has no finite subcover from {Bδx

(x)}x∈[a,b].
Inductively, we get a sequence of nested closed intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

1This will take a while and our “proof” will not quite work, so we’ll have to come back and go

over it again. But the proof contains many important ideas, so it’s worth spending some time on

and doing twice.
2I don’t know who first had this idea, but it is the main idea in most proofs of what is called the

Heine-Borel theorem which I’ll discuss later.
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with diameters

diam Ij = diam[aj , bj ] = bj − aj =
b − a

2j
→ 0.

Just in case, you need to be reminded: A sequence {xj}
∞
j=1 in a metric

space X converges to z ∈ X if for any ǫ > 0, there is some N ∈ N such
that

j > N =⇒ |xj − z| < ǫ.

Subclaim 1:
∞
⋂

j=1

Ij = {z} is a singleton.

Proof of subclaim 1: Let Ij = [aj , bj ] as above. Since

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

we know a1 ≤ a2 ≤ a3 ≤ · · · . Also, {aj}
∞
j=1 is bounded above by b1. Therefore, the

limit
lim
jր∞

aj = sup{aj}
∞
j=1 = z exists.

Also, z ∈ Ij = [aj , bj ] for every j. Similarly,

lim
jր∞

bj = inf{bj}
∞
j=1 = z̃ exists with z̃ ≤ bj for every j.

Therefore, |z − z̃| ≤ bj − aj for every j and ζ = |z − z̃| is a non-negative real number
which satisfies ζ ≤ η for every η > 0. This means ζ = 0 and z = z̃. We have definitely
shown

{z} ⊂
∞
⋂

j=1

Ij .

Exercise 4 Show
∞
⋂

j=1

Ij ⊂ {z}.

Recall there is some δz > 0 such that

|ξ − z| < δz

ξ ∈ [a, b]

}

=⇒ |f(ξ) − f(z)| < ǫ.

Subclaim 2: For j large enough Ij ⊂ Bδz
(z).
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Proof of subclaim 2: There is some N ∈ N such that

j > N =⇒

{

|bj − aj | < δz/2
|z − aj | < δz/2.

Thus, x ∈ Ij = [aj , bj] implies

|x − z| ≤ |x − aj| + |aj − z| ≤ |bj − aj | + |aj − z| < δz. �

Therefore {Bδz
(z)} is a finite subcover of Ij (with one element). This contradicts the

fact that Ij has no finite subcover. The contradiction establishes the claim. �

Let’s restate the claim we have just established like this: If {Bδ(x)}x∈[a,b] is an
open cover of [a, b], then there exists a finite subcover

B = {Bδ(x1), Bδ(x2), · · · , Bδ(xk)}. (5)

There are a few aspects of the foregoing proof of this claim it may be worthwhile to
pause and point out. Let’s start with a generalization which you should now be able
to prove:

Exercise 5 If {Uα}α∈Γ is any open cover of a set A ⊂ R which is closed and bounded,
then there exists a finite subcover

{Uα1
, Uα2

, . . . , Uαk
}.

This is essentially half (maybe more than half) of what is called the Heine-Borel

theorem which I will come back to shortly. This property of having a finite subcover
of any open cover does not always hold for closed and bounded sets in a topological
space, but it provides the structure of a useful general concept:

Definition 1 Given a topological space X, a set K ⊂ X is said to be compact if
every open cover of K contains a finite subcover.

The Heine-Borel theorem generalizes our claim to general compact sets and to higher
dimensional Euclidean space R

n:

Theorem 2 (Heine-Borel, Theorem 2.23 in Gunning) A subset A ⊂ R
n is compact

if and only if A is closed and bounded.

Some version of each of the subclaims above is also used to prove the Heine-Borel
theorem. One of those in particular is worth stating:
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Theorem 3 (See Lemma 2.19 and Theorem 2.21 in Gunning) If C1 ⊃ C2 ⊃ C3 ⊃ · · ·
is a nested sequence of nonempty closed sets in R

n with

diam(Cj) = sup{|x − ξ| : x, ξ ∈ Cj} → 0 (as j → ∞)

then
∩∞

j=1Cj = {z} is a singleton.

Returning to our claim (5), we note that for the purposes of the claim the radii
δ may be taken as arbitrary positive numbers—not necessarily all the same so that
δ = δx and not necessarily arising as tolerances from any continuity condition. We
never used any property of the radii related to continuity. We only used that each
radius δ = δx was positive. But assuming the δxj

do come from continuity, we can
attempt to prove the assertion of the original theorem that f is uniformly continuous.
Let’s start by setting

δ =
1

2
min{δx1

, δx2
, . . . , δxk

}.

Then δ is a fixed positive number, which is the sort of tolerance we want for uniform
continuity. We could leave off the factor of 1/2, but it doesn’t hurt to take a δ which
is a bit smaller to give us help with the triangle inequality. Let’s see how that works
out:

If ξ, x ∈ [a, b] with |ξ − x| < δ, then because B is a cover, there is some xj with
x ∈ Bδxj

(xj). Also,

|ξ − xj | ≤ |ξ − x| + |x − xj | <
1

2
δxj

+ δxj
=

3

2
δxj

. (6)

I would like, of course, to use continuity at xj applied to ξ (and x):

|f(ξ) − f(x)| ≤ |f(ξ) − f(xj)| + |f(xj) − f(x)|. (7)

But, as you can see, I’ve got a problem because (6) does not give me ξ ∈ Bδxj
(xj).

You can see there in (6), my factor of 1/2 is trying to help, but even if I took a smaller
factor like 1/4 it still won’t help enough. I’ve already used up the entire continuity
tolerance δxj

in regard to x.
I’m going to have another problem too because my use of the triangle inequality

in (7) gives me, according to the pointwise continuity condition (3)

|f(ξ) − f(x)| < |f(ξ) − f(xj)| + ǫ
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which is not quite going to be good enough. That is, even if I could apply pointwise
continuity at xj with regard to ξ, I’ve also already used up all of my ǫ in application
of pointwise continuity at xj in regard to x.

These problems can be fixed, but we need to start back at the beginning of the
proof. Note that (3) was essentially the first line of our proof. So we, in some sense,
started with a fatal error in the first line. With what we know now, however, these
errors are easily fixed up: First of all, for each x ∈ [a, b], there is some δx such that

|ξ − x| < δx

ξ ∈ [a, b]

}

=⇒ |f(ξ)− f(x)| <
ǫ

2
. (8)

Compare to (3) and notice that I replaced ǫ with ǫ/2. Is that okay? Does continuity
allow me to do that?

Next, this gives me an open cover

{Bδx/2(x)}x∈[a,b].

Again, I’ve replaced the radii δx with smaller (but still positive) radii δx/2. I still get
an open cover of [a, b], and my argument above dividing the intervals in half over and
over again still works and gives me a finite subcover

C = {Bδx1
/2(x1), Bδx2

/2(x2), . . . , Bδxk
/2(xk)}.

We’ll keep our factor of 1/2 as before and set

δ =
1

2
min{δx1

, δx2
, . . . , δxk

}.

Now if ξ, x ∈ [a, b] with |ξ − x| < δ, then because C is a cover, there is some j with

x ∈ Bδxj
/2(xj).

Therefore,

|ξ − xj | ≤ |ξ − x| + |x − xj | <
1

2
δxj

+
1

2
δxj

= δxj
.

Therefore, we can use the pointwise continuity condition (3) at xj to get

|f(ξ) − f(x)| ≤ |f(ξ) − f(xj)| + |f(xj) − f(x)| <
ǫ

2
+

ǫ

2
= ǫ.

We have shown f is uniformly continuous. �
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3 Compactness

I’m going to restate the definition of compactness:

Definition 1 Given a topological space X, a set K ⊂ X is said to be compact if
every open cover of K contains a finite subcover.

Note that this applies in any metric space, any normed space, and any inner product
space. In a certain sense, this is the “right” replacement for the requirement that a
set be closed and bounded in spaces where being closed and bounded is not a strong
enough requirement. Here are some relatively easy results you should be able to prove
on your own. See also Theorems 2.21 and 2.22 of Gunning.

Theorem 4 Any closed subset of a compact set is compact.

Theorem 5 Any compact subset of a metric space is closed and bounded.

Theorem 6 Any pointwise continuous function f : K → R defined on a compact
subset K of a metric space is uniformly continuous.

Proof: For any ǫ > 0, there is some δ = δx > 0 such that

d(ξ, x) < δx =⇒ |f(ξ) − f(x)| <
ǫ

2
.

This means {Bδx/2(x)}x∈K is an open cover of K. Because K is compact, there exists
a finite subcover

B = {Bδx1
/2(x1), Bδx2

/2(x2), . . . , Bδxk
/2(xk)}.

Now, given any ξ, x ∈ K, there is some xj such that

x ∈ Bδxj
/2(xj).

If

d(ξ, x) < δ =
1

2
min{δx1

, δx2
, . . . , δxk

},

then

d(ξ, xj) ≤ d(ξ, x) + d(x, xj) <
δxj

2
+

δxj

2
= δxj
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and therefore,

|f(ξ) − f(x)| ≤ |f(ξ) − f(xj)| + |f(xj) − f(x)| <
ǫ

2
+

ǫ

2
= ǫ.

We have shown f : K → R is uniformly continuous. �

Notice that the last result, Theorem 6, applies to a continuous function f : [a, b] →
R as given in Theorem 1. But the proof seems much easier. The reason is that to
apply Theorem 6 in the case of Theorem 1, one needs to know the interval [a, b] is
compact. This fact can be obtained, and is in some sense the main content of, the
Heine-Borel theorem.

4 Topological Continuity

Finally, I will recall a definition stated in class but not yet recorded here in these
notes:

Definition 2 Given topological spaces X and Y , a function f : X → Y is continu-

ous if
f−1(V ) is open in X whenever V is open in Y .

Exercise 6 Let X and Y be metric spaces. Show that f : X → Y is continuous on
X according to the ǫ-δ definition (metric continuous) if and only if f : X → Y is
continuous according to the definition given above (topological continuity).

Exercise 7 Can you define a meaningful notion of continuity at a point for a
function f : X → Y between topological spaces?
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