@ CrossMark

The Consistency
of Arithmetic
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n 2010, Vladimir Voevodsky, a Fields Medalist and

professor at the Institute for Advanced Study, gave a

lecture entitled, “What If Current Foundations of
Mathematics Are Inconsistent?” Voevodsky invited the
audience to consider seriously the possibility that first-
order Peano arithmetic (or PA for short) is inconsistent. He
briefly discussed two of the standard proofs of the
consistency of PA (about which we will say more later),
and explained why he did not find either of them
convincing. He then said that he was seriously suspicious
that an inconsistency in PA might someday be found.

About one year later, Voevodsky might have felt vindi-
cated when Edward Nelson, a professor of mathematics at
Princeton University, announced that he had a proof not
only that PA was inconsistent, but that a small fragment of
primitive recursive arithmetic (PRA)—a system that is
widely regarded as implementing a very modest and “safe”
subset of mathematical reasoning—was inconsistent [11].
However, a fatal error in his proof was soon detected by
Daniel Tausk and independently by Terence Tao. Nelson
withdrew his claim, remarking that the consistency of PA
remained “an open problem.”

For mathematicians without much training in formal
logic, these claims by Voevodsky and Nelson may seem
bewildering. While the consistency of some axioms of
infinite set theory might be debatable, is the consistency of
PA really “an open problem,” as Nelson claimed? Are the
existing proofs of the consistency of PA suspect, as
Voevodsky claimed? If so, does this mean that we cannot
be sure that even basic mathematical reasoning is
consistent?

This article is an expanded version of an answer that I
posted on the MathOverflow website in response to the
question, “Is PA consistent? do we know it?” Since the
question of the consistency of PA seems to come up

repeatedly and continues to generate confusion, a more
extended discussion seems worthwhile.

Some Preliminaries

One of the great achievements of the late nineteenth and
early twentieth centuries was the recognition that many
seemingly metamatbematical questions—questions about
the mathematical enterprise as a whole, such as the validity
of its methods of reasoning—could be formulated as
mathematical questions, and therefore studied mathemat-
ically. In particular, the consistency of PA can be thought of
as a purely mathematical assertion, and so one can ask the
usual questions that one typically asks of mathematical
statements—has it been proved? And if so, what does the
proof look like?

To understand the status of the statement “PA is con-
sistent,” we must therefore first familiarize ourselves with
the relevant mathematical results. Below, we review the
main proofs of the consistency of PA, and then discuss their
implications.

There is one sociological fact that contributes to the
confusion surrounding the consistency of PA, namely that
even though mathematicians will agree in principle that
every proof must start with some axioms, in practice they
almost never state explicitly what axioms they are assuming.
If pressed, most mathematicians will usually say that the
generally accepted axiomatic system for mathematics is ZFC,
the Zermelo—Fraenkel axioms for set theory together with
the axiom of choice. Ironically, most mathematicians cannot
even state the axioms of ZFC precisely, let alone explicitly
verify that their proofs can be formalized in ZFC. Neverthe-
less, for most mathematicians, ZFC acts as the de jure
foundation for mathematics, and if someone does not bother
to state explicitly what axioms they are ultimately relying on,
then we can usually assume that ZFC will suffice.
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A ZFC Proof That PA Is Consistent

If the consistency of PA is a mathematical question, and
ZFC is supposed to be the foundation for mathematics,
then a natural first question to ask is whether the consis-
tency of PA is provable in ZFC. The answer is yes.

This is a good moment to review the definition of PA.
The full definition is somewhat complicated and is avail-
able in any number of textbooks on mathematical logic, so
we limit ourselves to a sketch.

The first thing to be aware of is that even stating the
axioms of PA requires describing a formal language. For-
mulas in the first-order language of arithmetic are strings of
symbols satisfying certain syntactic rules. There are logical
symbols V, A, -, =, =, V, 3. There are arithmetical
function symbols +, X, 0, S, and there is a relation sym-
bol >. There are parentheses, used for grouping, and there
are variables. The syntactic rules allow us to write formulas
such as

(z > S0) AVxVy(—(x x y = 2z) V (x = S0) V (y = S0)).
(1)

Formula (1) has two bound variables, x and y, meaning
that there is a quantifier attached to them, and one free
variable, z. Formulas with no free variables are called
sentences.

Most of the axioms of PA are sentences that formally
express very simple properties of arithmetic. There is one
axiom (or more precisely, an axiom schema, meaning a
family of axioms satisfying a certain template) that is more
subtle, namely the induction axiom. Intuitively speaking,
the induction axiom says that if P is a property that a natural
number might have, and if 0 has P, and moreover if
whenever z has P then the successor of z also has P, then
every natural number has P. But what is a property?

In first-order Peano arithmetic, which is the subject of
the present article, the induction axiom is asserted only for
properties that are expressible with a first-order formula.'
More precisely, for every first-order formula ¢(x,y) with
free variables x,y (here y represents a finite sequence of
variables), we have an instance of the induction axiom that
looks something like this:

Vy((¢(0,y) AVx($(x,y) = ¢(Sx,y))) = V(. y)).
(2)

From the axioms, one can derive theorems by applying the
rules of inference of first-order logic, which are syntactic
rules for manipulating formulas; again, these rules are
described in textbooks, and we will not enumerate them
here. We just remark that PA uses classical rather than
intuitionistic logic, meaning that the rules include the law
of the excluded middle (which allows one to deduce PV
—P for every P).?

Saying that PA is consistent just means that a contra-
diction—meaning a formula such as (0 =0)A (0= 0)
that is the conjunction of a formula and its negation—
cannot be derived from the axioms using the rules of
inference. Equivalently, since first-order logic is explosive,
meaning that from a contradiction one can derive any
(syntactically well-formed) sentence whatsoever, to say that
PA is consistent means that there is some statement that is
not a theorem of PA.

So far, our description of PA has been purely syntactic
and not semantic. That is, we have not assigned any
meaning to the symbols. Model theory is the study of
mathematical structures that satisfy given axioms; to do
model theory, we have to interpret the symbols V, A, =, =,
v, 3 as (respectively) or, and, not, equals, for all, and there
exists; we also let the variables range over the elements of
the structure X that is to satisfy the axioms, and we inter-
pret the function and relation symbols as functions and
relations on X.?

The standard way to show that some set of axioms is
consistent is to exhibit a structure that satisfies all the axioms.
In the case of PA, the obvious candidate is N, the set of
natural numbers, with +, X, 0, S, and > interpreted as addi-
tion, multiplication, zero, successor, and greater than. After
all, Nwas the example that motivated the axioms of PA inthe
first place. Indeed, arguing set-theoretically, it is straightfor-
ward to construct the natural numbers, show that they satisfy
all the axioms of PA, and conclude that PA is consistent. This
argument is easily formalized in ZFC.

It is worth remarking that this set-theoretic proof of the
consistency of PA does more than just show that the concept
ofanunbounded sequence 1, 2, 3, . . . is coherent; if that were
all it showed, then it would not show very much, since even
asking whether PA is consistent presupposes that the defi-
nition of PA is coherent, and that definition already implicitly
assumes that it is meaningful to talk about (certain kinds of)
unbounded sequences, such as arbitrarily long strings of
symbols. The ZFC proof affirms that first-order formulas
involving arbitrarily long alternations of quantifiers (for all x;
there exists x, such that for all &3 there exists x4 ...) express
meaningful properties of natural numbers. This claim goes
beyond what is needed to construct PA itself.

Implications of the ZFC Proof

Under most circumstances, the formalizability in ZFC of a
proof of a statement S is enough to cause people to regard
Sas “not an open problem.” In fact, the above set-theoretic
argument for the consistency of PA can be carried out using
much weaker axioms than ZFC, and from a conventional
mathematical standpoint, it is just as rigorous as proving
that the axioms for an algebraically closed field are con-
sistent by exhibiting C as an example, or proving that the
axioms for a Hilbert space are consistent by exhibiting

"There is another version of the Peano axioms, usually known as the second-order Peano axioms, with the property that there is only one mathematical structure
satisfying them (namely N), which can be used as a definition of N. In contrast, there are many nonisomorphic structures, known as nonstandard models, that satisfy

the first-order Peano axioms.

2As far as the consistency of first-order arithmetic is concerned, the distinction between intuitionistic logic and classical logic turns out not to matter too much. Gédel,
and independently Gentzen [13], showed constructively that Heyting arithmetic, which is the intuitionistic counterpart of PA, is consistent if and only PA is consistent.
SNote in particular that the variables are not allowed to range over sets of elements; this restriction is what makes PA a first-order theory.
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I*([0,1]) as an example. If we regard a mathematical
statement as being definitively established once it has been
mathematically proved, then the consistency of PA has
been definitively established. Nevertheless, many people
find the above proof of the consistency of PA unsatisfac-
tory. Why might that be?

We can partially answer this question by recalling some
history.* Especially during the late nineteenth and early
twentieth centuries, many mathematicians were concerned
with whether mathematical reasoning was trustworthy. The
paradoxes of set theory had demonstrated that incautious
use of superficially valid mathematical reasoning could lead
to contradictions; so naturally, mathematicians were eager
to delimit exactly which reasoning principles were trust-
worthy and which were not. One option was to be
extremely conservative, but this came at the cost of
rejecting many mathematical proofs that seemed perfectly
fine, and not everyone was willing to give those up. A
variety of systems of varying logical strength were pro-
posed for formalizing various subsets of mathematical
knowledge, and PA was one candidate for formalizing
arithmetical knowledge.

Because of this potential role as a foundation for part of
mathematics, people did not look at the axioms of PA in
quite the same way that they looked at axioms for an
“ordinary mathematical structure” such as a differentiable
manifold or a Lie algebra. Many felt that a consistency proof
for PA should be held to a higher standard of rigor than
usual—an “ordinary” mathematical proof might not be
good enough, since the consistency proof was supposed to
certify (to skeptics who raised doubts about certain kinds of
mathematical arguments) that the system was “safe.”

In this context, someone could object that the set-theo-
retic proof employs dubious reasoning about infinity. Being
finite creatures, we cannot apprehend infinite objects in the
same way that we can apprehend finite objects, and if we
reason about infinite objects by analogy with finite objects,
we might be on logically shaky ground. If we reexamine the
set-theoretic proof of the consistency of PA, then we see that
it amounts to an argument that there cannot be a contradic-
tion in the axioms of PA, because there is an object—
specifically, an infinite object, namely N—that satisfies all
those axioms. A contradiction in PA would mean that N
simultaneously has a (first-order definable) property and
does not have that property—but this is nonsense, because
an object either has a property or it doesn’t.

If you, like most mathematicians, find N and its first-
order properties to be perfectly clear, then the set-theoretic
proof should satisfy you that PA is consistent. But some
might be uneasy that the argument seems to presuppose
the reality of infinite sets (sometimes referred to as pla-
tonism about infinite sets.)’ Voevodsky noted in his talk
that first-order properties of the natural numbers can be
uncomputable. This means that if our plan is to react to a
purported proof of P A =P by checking directly whether P

or =P holds for the natural numbers, then we might be out
of luck—we might not be able to figure out, in a finite
amount of time, which of P and —P really holds for the
natural numbers. In the absence of such a decision pro-
cedure, how confident can we really be that the natural
numbers must either have the property or not? Maybe the
alleged “property” is meaningless.

This line of thinking may lead us to wonder whether
“PA is consistent” can be proved without assuming, as ZFC
does, that infinite sets exist. After all, “PA is consistent” is a
statement about what happens when a finite list of rules is
applied to finite strings of symbols, and if there is a proof of
a contradiction, then it must materialize after a finite
number of applications of those rules, and only finitely
many axioms can enter the picture. It therefore seems
plausible that we might be able to give a finitary proof that
PA is consistent. The term finitary has no universally
agreed-upon precise definition, but following custom, we
will use it informally to mean methods of mathematical
proof that try to avoid, or minimize, assumptions about
infinite quantities and processes.

But Wait! What About Godel?

At this point the reader might recall that Godel’s second
incompleteness theorem tells us that if PA is consistent,
then the consistency of PA—or more precisely, a certain
string Con(PA) that “expresses” the consistency of PA—is
not provable in PA. Doesn’t this theorem tell us that we
cannot hope to prove the consistency of PA except by
employing an axiomatic system that is stronger than PA?
And if that is the case, then it would seem that we can never
be sure that PA is consistent; if we have doubts about PA,
then any “proof” that PA is consistent must rely on even
more doubtful assumptions. Any consistency proof must be
circular in the sense of assuming more than it proves, so
not only is the consistency of PA an open problem, it is
doomed to remain open forever.

The above argument is correct, up to a point. The
MathOverflow question “Is PA consistent? Do we know it?”
asks more specifically whether the consistency of PA has
been proved in “a system that has itself been proven con-
sistent.” This question tacitly assumes that it is somehow
possible to “pull yourself up by your own bootstraps” by
setting up some system whose consistency is guaranteed
because it has been proven—presumably in some absolute,
unconditional sense. But any consistency proof has to
assume something, and you can always cast doubt on that
“something” and demand that it, too, be given a consis-
tency proof, and so on ad infinitum. Even if somehow you
found a plausible system that proved its own consistency,®
any doubts you had about its consistency would hardly be
allayed just because it vouched for itself! At some point,
you simply have to take something for granted without
demanding that it be proved from something more basic.
This much is obvious, even without Godel’s theorem.

“For much more historical context, | recommend the article by Kahle [10].

50n the other hand, some people, such as Solomon Feferman [5], explicitly reject platonism but nevertheless find the argument that N satisfies all the axioms of PA to

be completely convincing.

63ee, for example, Willard [18] for an explanation of how this might be possible.
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Where the above argument goes wrong is the claim of
circularity. Godel’s theorem does not actually say that the
consistency of PA cannot be proved except in a system that
is stronger than PA. It does say that Con(PA) cannot be
proved in a system that is weaker than PA, in the sense of a
system whose theorems are a subset of the theorems of PA.
And therefore Hilbert's original program of proving state-
ments such as Con(PA) and Con(ZFC) in a strictly weaker
system such as PRA is doomed. However, the possibility
remains open that one could prove Con(PA) in a system
that is neither weaker nor stronger than PA, e.g., PRA
together with an axiom (or axioms) that cannot be proved
in PA but that we can examine on an individual basis, and
whose legitimacy we can accept. This is exactly what
Gerhard Gentzen accomplished back in the 1930s, and it is
to Gentzen’s proof that we turn next.

Ordinals below ¢

The crux of Gentzen’s consistency proof is something
known as the ordinal number €,. Some accounts of ¢, make
it seem “even more infinitary” than the set of all natural
numbers, and so Gentzen’s proof might seem to be even
less satisfactory than the ZFC proof, as far as suspicious
axioms are concerned. Therefore, this section gives a self-
contained description of €, that is as finitary as possible.
Our account borrows heavily from that of Franzén [6].

I should remark that the discussion in this section and the
next is conducted using “ordinary mathematics,” and I advise
readers to use their ordinary mathematical ability to digest the
arguments, without at first worrying about what assumptions
are used in them. The more subtle question of the minimal
assumptions needed for the proof can be addressed after the
arguments are understood. We return to this question in the
section on the implications of Gentzen’s proof.

Define a /ist to be either an empty sequence—denoted
by () and referred to as the empty list—or, recursively, a
finite nonempty sequence of lists. So for example,
(©), O, () and (), O, {O), (O, O, () are lists.
The number of constituent lists is called the length of a (it is
zero for the empty list). If a is a nonempty list, then we
write ali] for the ith constituent list of a, where i ranges
from 1 to the length of a.

Next, recursively define a total ordering < on lists as
follows (it is essentially a lexicographic ordering). Let a
and b be lists, with lengths m and n respectively. If m <n
and a[i] = bli] for all 1 <i<m (this condition is vacuously
satisfied if m = 0), then a < b. Otherwise, there exists some
i such that a[i] # bli]; let iy be the least such number, and
declare a < b if alip] < blip).

Finally, recursively define a list a to be an ordinal if all
its constituent lists are ordinals and a[i] > a[j] whenever
i<j. (In particular, the empty list is an ordinal, since the
condition is vacuously satisfied.)

As an example, the smallest ordinals, listed in increasing
order, are () and (()) and ((), ()) and ((), (), ()) and
(), O), ), (). The ordinal ((())) is greater than all of
these, and ((( ), ())) is greater than ((( ), (())).

In the literature, what we here call an ordinal is called
the Cantor normal form for an ordinal below ¢y, and the

standard notations for ((( ))) and (((), ())) and ((( ), (())
are o and w? and -2 respectively. We have chosen our
notation to emphasize that at no point are we appealing to
the notion of an infinite set. Of course although any par-
ticular list is finite, there is no fixed upper bound on the
length of a list, so if you wanted to talk about the set of all
lists or the set of all ordinals, then you would have to talk
about an infinite set. However, there is no need to appeal
to such entities to make sense of our definitions.

The basic fact about ordinals is the following theorem.

THEOREM 1. If ay,a;,as,... is a sequence of ordinals
and a; > a; whenever i<j, then the sequence stabilizes;
i.e., there exists iy >1 such that a; = a,, for all i> 1.

The alert reader will notice that the statement of Theo-
rem 1 presupposes the concept of an arbitrary infinite
sequence and hence is not finitary. We will return to this
point below, but first let us prove Theorem 1. I encourage
the reader to study the proof carefully, since our later dis-
cussion about the correctness of Gentzen’s proof will be
hard to appreciate otherwise.

Proor or ThrorEm 1. Define the beight h(a) of an ordi-
nala to be the number of left parentheses in its
representation that precede the first right parenthesis. For
example, the height of ((), () is 2. It is easily proved by
induction that if h(a) > h(b), then a > b; equivalently, if
a<b, then h(a) < h(b). The proof of Theorem 1 proceeds
by induction on H := min;{h(a;)}. If H = 1, then a; is the
empty list for some 7, and since no list is strictly less than
the empty list, the sequence must stabilize at that point.

Otherwise, let us form the sequence b; := a;[1]. Note
that h(b;) = b(a;) — 1. Since a; > a; whenever i<j, it fol-
lows that b; > b; whenever i <j. Therefore, by induction, all
but finitely many of the b; are equal to a specific ordinal,
which we call b. If we restrict attention to the a; such that
a;[1] = b, then each such a; starts with some finite number
of repetitions of b; let B denote the smallest number of
repetitions (over all a; such that a,[1] = b). Since the con-
stituent lists of an ordinal are arranged in weakly
decreasing order, and since the a; are arranged in weakly
decreasing order, it follows that the a; with exactly B copies
of b must come after the a; with more than B copies of b.
Hence all but finitely many of the a; start with exactly B
copies of b. If some a; consists of exactly B copies of b and
nothing else, then the sequence must stabilize at that point,
and we are done.

Otherwise, restrict attention to those «; that start with
exactly B copies of b, and form the sequence
¢i = a;[B+1]. Then b(c;) <h(b), so we can repeat the
same argument that we gave in the previous paragraph to
conclude that all but finitely many of the a; start with
exactly B copies of b followed by exactly C copies of ¢, for
some natural number € and some ordinal ¢ <b. In this way,
we can inductively construct a decreasing sequence of
ordinals b > ¢ >d > --- of height less than H. By the
induction hypothesis, this sequence must stabilize; if it

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection , Volume 41, Number 1, 2019 25



stabilizes with, say, Z copies of z, then there must be some
a; that consists of precisely B copies of b followed by C
copies of ¢, etc., and terminating with Z copies of z. This a;
must be <a; for all 7, and hence the sequence must sta-
bilize with a;. O

We have stated and proved Theorem 1 in terms of
arbitrary infinite sequences, because that is the easiest way
to see what is going on. For Gentzen’s proof, though, the
following weak corollary of Theorem 1 suffices.

THEOREM 2. If M is a Turing machine that given i as
input, outputs an ordinal M(i), and M(i)>M(i+ 1) for
all i, then the sequence stabilizes.”

Although ordinals are commonly defined in the litera-
ture using set theory, Theorem 2 can be formulated and
formally proved without any mention of sets; it can, for
example, be phrased in the first-order language of arith-
metic, using standard tricks for encoding Turing machines
and finite sequences using natural numbers. In fact, The-
orem 2 can almost be proved in PA. The full justification of
this claim is rather technical, so again we will just sketch the
idea.

First, we can formulate a theorem—call it Theorem 1'—
that is intermediate in strength between Theorem 1 and
Theorem 2, which restricts Theorem 1 to weakly decreas-
ing sequences of ordinals that are definable by a first-order
formula ¢. To prove this version of the theorem, suppose
we have a formula ¢ that defines a weakly decreasing
sequence of ordinals and asserts that they all have height at
least H. Then we can mimic the proof of Theorem 1 to
construct a PA proof of Theorem 1’ for ¢. The only catch is
that we need, as building blocks, PA proofs of Theorem 1/
for formulas with smaller H—but we can assume by
induction that these are available. Note that this is an
inductive procedure for constructing PA proofs of individ-
ual instances of Theorem 1’ and cannot be converted to a
PA proof of Theorem 1’ itself; however, it illustrates that
each instance of Theorem 1’ can be proved without
assuming the existence of infinite sets.

Gentzen’s Consistency Proof

Gentzen is usually regarded as having produced four dif-
ferent versions of his consistency proof. Only three
versions were published during his lifetime, but the first
published version is usually called his second proof,
because it involved a major revision of the version that he
originally submitted for publication. All versions of his
proof may be found in his collected works [13]. For our
present purposes, the differences between the versions are
not critical, so we simply refer to “Gentzen’s proof” without
specifying the version.

Giving a full account of Gentzen’s proof is beyond the
scope of this article, because it necessarily involves careful
attention to the nitty-gritty details of PA, but we give a
sketch of the main idea, following the account of Tait [16].
It is convenient to assume that negation — occurs only in
atomic formulas, meaning those not involving V, A, V, or 3
(this can always be achieved, because — can always be
“pushed inside” at the cost of toggling between V and A
and between V and 3). Imagine that you are playing a game
against an adversary, and the state of the board at any time
consists of a finite number of sentences. Your goal is to
reach a state in which one of the sentences is a true atomic
sentence.

The components of the sentences ¢ V y and ¢ Ay are ¢
and Y. The components of the sentences Vx¢(x) and
dx¢(x) are the sentences ¢(SSS --- SO) for some finite
number of occurrences of S. When it is your turn, you point
to a sentence ¢, and if it is a V-sentence or an J-sentence,
then you add one of the components of ¢ to the board, and
then you go again. If you point to a A-sentence or a V-
sentence, then it is your adversary’s turn; the adversary
adds a component of ¢ to the board and removes ¢ from
the board, and then it is your turn again.

To understand the point of the game, let us provisionally
accept the reality of N, and regard sentences as making
assertions about N that are either true or false. We are
trying to show that at least one of the sentences on the
board is true by instantiating all the variables with specific
numbers and reducing everything to an atomic sentence
whose truth can be directly checked by numerical calcu-
lation. When a universal quantifier shows up, we allow an
adversary to instantiate the variable, since we are supposed
to be able to win no matter what the adversary picks.
Intuitively, we will have a winning strategy—which, fol-
lowing Gentzen, we call a reduction of the initial state—if
and only if at least one of the sentences on the board is
true.

If we now don our skeptical face and claim not to
understand what truth means, we can forget about truth
and simply use the existence of a reduction as a surrogate
for truth. Now suppose we have a set I' of sentences aris-
ing in a formal PA proof. The core of Gentzen’s proof,
where the hard work is done, is to construct, in an effective
manner, a reduction of I'. This is done inductively, by
showing that if we have a reduction of I and we introduce
an axiom or a rule of inference, then the resulting I” also
has a reduction. The punch line is that some sentences,
such as 0 = SO, manifestly have no reduction, and so are
not derivable in PA.

The reason ordinals show up in the proof is that they are
used to track game trees. In particular, we need to be able
to show that reductions always terminate. Proving this
requires Theorem 2 (or something similar).

“In fact, the theorem can be further weakened to assert the stabilization of all primitive recursive descending sequences of ordinals; see [17, Lemma 12.79] or [2,
Theorem 4.6], for example. The fact that PRA plus Theorem 2 implies that PA is consistent is only implicit and not explicit in Gentzen’s original proof. | have chosen this
way of presenting the argument rather than the more common approach of explaining what “‘induction up to €, is, because | believe that Theorem 2 is more

accessible to the general reader without training in logic and set theory.
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Implications of Gentzen’s Proof

Gentzen’s proof certainly meets ordinary standards of
mathematical rigor, but keep in mind that we are trying to
adhere to higher than usual standards. So what assump-
tions are really needed to carry out the proof? Answering
this question requires not just understanding the argument,
but also some experience with formalizing mathematical
arguments. Fortunately for us, logicians have carefully
analyzed the argument, and the verdict is that other than
Theorem 2, everything in Gentzen’s proof can be formal-
ized in PRA, which, as we said earlier, is a system of axioms
that is widely regarded as being finitary and very conser-
vative. In particular, PRA makes no reference to infinite
sets. Thus, Gentzen has reduced the analysis of arbitrarily
complicated first-order sentences of PA, and their classical
logical consequences, to a single finitary statement, namely
Theorem 2. What objection might one have to Theorem 2?

Voevodsky’s objection was that Gentzen’s only justifi-
cation for Theorem 2 was that it was self-evident—a
suspicious claim, according to Voevodsky, since Godel’s
theorem tells us that Theorem 2 cannot be proved using
“usual induction techniques.” If we take this objection at
face value, then it is at best misleadingly phrased. Gentzen
does not say that Theorem 2 (or rather, the variant of it that
he uses in his proof) is self-evident; he gives an inductive
argument along the lines we have given. As we have seen,
by normal mathematical standards, there is nothing par-
ticularly “unusual” about the inductive argument.® The
only way I have been able to make sense of Voevodsky’s
argument is by interpreting it as assuming that a consis-
tency proof for a system can be convincing only if it can be
carried out in a system strictly weaker than the system itself.
If we accept this assumption, then we can indeed view
Godel’s theorem as a deal-breaker, but then Voevodsky’s
objection becomes a blanket rejection of all consistency
proofs and has nothing to do with any specific concerns
about PA or Gentzen'’s proof. As we argued earlier, Godel’s
theorem, which Voevodsky cites in support of his objec-
tion, does not entail such blanket skepticism.

It could be that Voevodsky’s real concern was that even
though the statement of Theorem 2 is finitary, it does not
feel like an axiom, and the only ways to justify it seem to be
infinitary. Gentzen tried to argue that the induction needed
for his proof was just more complicated than, and not
different in character from, the finitary induction argument
that every weakly decreasing sequence of natural numbers
must eventually stabilize. But since “finitary” is not pre-
cisely defined, the point can be legitimately debated. Note,
though, that rejecting the proof of Theorem 1 comes with a
cost: it potentially means that many routine mathematical
arguments by induction are suspect—not just those
involving arbitrarily complex first-order properties.

Alternatively, Voevodsky’s real concern may have been
that the proof of Theorem 2 is insufficiently constructive,
since the stabilization point is not, in general, computable.
Again, this could be a tenable objection, but it comes at a

price, because rejecting all “uncomputable mathematics”
means rejecting a sizable fraction of all mathematics. A
plausible candidate for an axiomatization of “com-
putable mathematics” (assuming classical logic and not
intuitionistic logic) is a system known as RCA [15]. In RCA,
one cannot prove the consistency of PA, but one cannot
prove Brouwer’s fixed-point theorem or the Bolzano—
Weierstrass theorem either.

Friedman’s Relative Consistency Proof
Speaking of the Bolzano—Weierstrass theorem, we should
mention a result due to Harvey Friedman, announced on the
Foundations of Mathematics mailing list [7] but not formally
published, that the inconsistency of PA would imply the
inconsistency of a system called SRM + BWQ. Here SRM (strict
reverse mathematics [8]) isa weak system of axioms that serves
as a “base theory,” and BWQ (Bolzano-Weierstrass for Q) is
the familiar mathematical principle that every bounded infinite
sequence of rationals has an infinite Cauchy subsequence.
Friedman’s proof is not directed at those who are
skeptical of infinite sets or uncomputable sequences, since
it uses both concepts (the set of indices of the subsequence
promised by BWQ can, and usually will, be an uncom-
putable set of natural numbers, even if the original
sequence is computable). Rather, it is directed at those who
feel that formal systems for mathematics are artificially
strong and overly general, and who argue that “natural”
mathematical statements require only a limited set of
induction principles. In particular, they reject the inductive
proof of Theorem 1 as being unnaturally strong. Friedman
argues that SRM + BWQ uses only principles that are rou-
tinely accepted in “mainstream mathematics,” and hence
that anyone who accepts that ordinary mathematical rea-
soning is consistent should accept that PA is consistent.
Even a sketch of Friedman’s proof requires concepts that
go beyond the scope of this article, but since his argument is
not well known, we say a few words here for the benefit of
readers with some background in logic. If we replace SRM
with RCAy, then the result is proved in Simpson [15, Theo-
rem 1.9.1]. The key point is that the unbounded existential
quantifier in BWQ allows one to construct computably enu-
merable sets (e.g., the set of all Turing machines that halt) from
computable approximations. In the terminology of second-
orderarithmetic, this lets us pass from A} comprehension to £
comprehension, which can then be “bootstrapped” up to
arithmetical comprehension. Therefore, every axiom of PA
can be derived in RCA( + BWQ, yielding a relative consis-
tency proof. In SRM, one strips down this argument to its bare
essentials to avoid “unnecessary generality,” but BWQ still
plays the same role of providing the crucial unbounded
existential quantifier. Note thata variety of other mathematical
statements besides BWQ could do the job equally well.

Taking Stock
There are other ways to prove the consistency of PA (e.g.,
there is a relative consistency proof based on Godel’s

8A far stronger induction argument was used by Robertson and Seymour in their proof of the graph minor theorem [9], and nobody seems to have rejected that

theorem on those grounds.
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“Dialectica” interpretation [1]), but the results we have
discussed so far already show that the normal mathematical
standards for declaring something to be proved, known,
solved, and no longer an open problem have been met and
even exceeded. Even those who are doubtful about some
mathematical methods may still be able to regard the
consistency of PA as being settled.

1. If we believe that N must either have, or not have, every
property expressible in the first-order language of
arithmetic, then the straightforward set-theoretic proof
should satisfy us that PA is consistent.

2. If we are doubtful about the meaningfulness of arbitrary
first-order properties of N, but we believe Theorem 2
along with routine mathematical principles that are
much simpler than Theorem 2, then Gentzen’s proof
should satisfy us that PA is consistent.

3. If we believe that SRM + BWQ is consistent, then
Friedman’s proof should convince us that PA is
consistent.

On the other hand, if we are exceptionally cautious, we
might reject all these proofs as using unjustified principles—
butif we do so, then we will have to reject significant portions
of ordinary mathematics as being unjustified as well.

Our discussion could end here, but some readers may still
be uneasy with the reference to belief (in infinite sets or
Theorem 2 or BWQ), and the introduction of shades of gray
into a discussion about mathematics. Isn’t the point of math-
ematics to eliminate the need for philosophical mumbo jumbo
and subjective, mystical beliefs, and to rely on proof instead?

The desire to avoid (or at least minimize) philosophical
assumptions and defend the objectivity of mathematics
leads some logicians to a point of view known as formal-
ism. Edward Nelson in particular was a self-avowed
formalist [12], and he even refused to believe in PRA. Can
formalism save us from having to make a personal decision
about what to believe?

The Formalist Perspective

The term formalist has no mathematically precise defini-
tion. Its meaning has changed slightly over time, and
different people mean different things by it. I will give a
description that I believe captures the main idea.

The formalist regards mathematics as a formal game
played with symbols. There are rules for how the symbols are
allowed to be manipulated. Importantly, the symbols have
no meaning. If we say that every differentiable function is
continuous, it does not mean that there really are such things
as functions, and that differentiability and continuity are real
properties that functions really have, and that every function
that has the differentiability property also has the continuity
property. Rather, all we are saying, in an abbreviated short-
hand, is that “every differentiable function is continuous” is a
theorem of ZFC (or perhaps a theorem of some other axio-
matic system that we are interested in).

For the formalist, the only meaningful mathematical
statements we can make are syntactic statements about
strings of symbols. It is also common, though not universal,
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for formalists to say that even statements about syntactic
objects are meaningful only when they are short enough
for us to apprehend and manipulate physically. That is,
formalists are often ultrafinitists. For an ultrafinitist, even a
statement such as “277%?17 — 1 is prime” does not, as one
might naively think, mean that if (for example) we took
277232917 _ 1 marbles and tried to arrange them in a rect-
angular pattern, then the only way to do so would be to
arrange them in a straight line. The problem is that we
cannot possibly lay our hands on 277317 — 1 marbles, so
what “2773217 _ 1 is prime” means is just that we have
verified that our rules for manipulating symbols such as
«2773217 _ 17 have produced a certain result. Formalists
thus not only reject the reality of infinite sets, but they often
reject the reality of natural numbers as well. They may say
that they do not know what it means to say “there exists a
prime number between 50 and 100” other than that this
statement is a theorem of some formal system.

One of the selling points of formalism is that it allows us
to sidestep questions about whether infinite sets exist, or
even whether we believe this axiom or that axiom. Is the
continuum hypothesis true or false? The formalist says, ask
not whether the continuum hypothesis is true or false; ask
only whether it has been proved in this system or that
system. Whereof one cannot speak, thereof one must be
silent. The formalist thus seems to offer us a way to salvage
the objectivity of mathematics in the face of competing
axiomatic systems. If you have a private mystical belief in
infinite sets, that’s your business, says the formalist, but in
the mathematical marketplace, the only legal tender is
mathematical proof—the deduction of theorems from
axioms, and not any questions about the truth of the
axioms.

What does this mean about the consistency of PA? At
first glance, it seems that the formalist approach should be
to sidestep the question whether PA is really consistent.
Ask not whether PA is really consistent; ask only whether
“PA is consistent” is provable in this or that system. It is
provable in ZFC; it is provable in primitive recursive
arithmetic plus Theorem 2; end of story.

Unfortunately, the matter is not quite so simple, and
formalists do not react in this way. The issue is this: “PA is
inconsistent” states that manipulating certain symbols
according to certain rules will produce a certain result, and
this is precisely the sort of statement that even a formalist
agrees is directly meaningful—at least if the length of the
proof is sufficiently short. Therefore, a formalist cannot
dodge the question as to whether PA is consistent or
inconsistent.

If a formalist must confront the consistency question,
then in the absence of an explicit derivation of a contra-
diction from the axioms of PA, what kinds of arguments
might a formalist accept as establishing that PA is
consistent?

Different formalists might have different answers to this
question, but I would like to argue that for at least one
flavor of formalist—which I will dub a strict formalist—the
answer is that no mathematical argument can definitively
establish the consistency of PA. Hence, if PA is in fact



consistent, its consistency will remain, for the strict for-
malist, an “open problem” permanently.

What do I mean by a strict formalist? A strict formalist—
let’s call him Stefan—is able to recognize, and verify as
correct, any existing formal mathematical proof, by fol-
lowing the syntactic rules. But Stefan takes very seriously
the statement that symbols have no meaning. Just as sym-
bols cannot be construed as “referring” to manifolds or
functions or integers, symbols cannot be construed as
referring to syntactic entities either. Any mathematical
argument that purports to prove that PA is consistent is
really just a finite derivation of the meaningless string
Con(PA) from some other strings. Stefan can manipulate
syntactic objects but cannot interpret a mathematical proof
as saying anything about syntactic objects. Even if Stefan
discovers a contradiction in PA and exclaims, “PA is
inconsistent!” he will not identify this meaningful English
statement with the meaningless string =Con(PA).

Stefan avoids all accusations of accepting “PA is con-
sistent” for unfounded, mystical reasons, but at the cost of
throwing out the baby with the bathwater—Stefan also
cannot accept most of what passes for mathematical
knowledge. For example, suppose we design a computer
program to search for positive natural numbers a and b
such that @ = 2. Stefan has no conclusive grounds for
believing that such a search is futile. Granted, just as
physicists strongly believe certain well-confirmed physical
theories, such as the seeming impossibility of transmitting
information faster than the speed of light, Stefan may agree
that it is a “well-confirmed mathematical theory” that our
program will never find what it is looking for. However, the
conviction that conventional mathematicians have, that the
proof of the irrationality of v/2 gives us an a priori guar-
antee that the search will never terminate, is unavailable to
Stefan.

Stefan is thus faced with a puzzle that I call “the unrea-
sonable soundness of mathematics.” Stefan can observe that
conventional mathematicians are remarkably successful at
making accurate predictions of the results of syntactic
manipulations, but he has no explanation for this success.”

In practice, I suspect that few if any mathematicians are
strict formalists. (Nelson was not, since he believed that
“demonstrably consistent” formal systems were possi-
ble [12].) Part of the reason may be that even though
formalists often pride themselves on their rejection of the
reality of abstract objects such as natural numbers, they do
accept the reality of symbols and the reality of syntactic
rules, and these concepts are very close to natural numbers
and arithmetical operations on natural numbers. Note that a
symbol is an abstract entity. I can pick up a piece of chalk
and write “¢” on a blackboard, and point to it, but the
symbol “¢” is not identical to the collection of chalk par-
ticles on the blackboard. I could have written ¢ on a piece
of paper, or I could have typed \phi into a computer and
used TEX to convert it to pixels on a screen, and if all these
multifarious physical entities are supposed to be the same
symbol, then a “symbol” must be an abstract entity.

Moreover, in order to distinguish SSSSO from SSSSSO, T have
to be able to count, and there is a very fine line between
affirming the objectivity of counting and affirming the
reality of small natural numbers. For a human being, it is a
very short step from being able to follow syntactic rules to
reasoning about the outcome, and before you know it, you
find yourself insisting that if you start with the string “0”
and all you do is repeatedly apply the rule “prepend an S”
to it, then you will never get a string with (say) a “A” in it,
even though all Stefan is equipped to do is verify the
absence of a A from the strings SO, SSO, SSSO, etc., on a
case-by-case basis.

If someone abandons strict formalism and accepts that at
least some types of mathematical reasoning can provide
secure knowledge about syntactic objects, then we are
back to shades of gray—one simply has to decide what
mathematical principles one accepts, and then, depending
on how strong those principles are, one may or may not be
able to conclude that PA, or some other axiomatic system,
is consistent.

Finite Approximations to Consistency

There is an angle on the consistency question that
someone who is not quite a strict formalist but who has
ultrafinitist leanings—Ilet’s call her Ulphia—might take.
Namely, Ulphia might not consider the conventional
reading of “PA is consistent” to be meaningful. Instead,
Ulphia might regard as meaningful only what a conven-
tional mathematician would call a finite approximation to
the consistency of PA, by which I mean something like
the following:

The shortest PA proof of a contradiction has length > 7,
(3)

where 7 is some number of feasible size. If Ulphia believes
in some reasoning principles, then presumably a proof
of (3) using those principles (with 7 being near the upper
limit of feasibility) would convince her that searching for a
PA proof of a contradiction would be a wild goose chase.

If we let Con(PA, n) denote the statement that there is
no PA proof of a contradiction of length less than 7, then
we can ask for the length of the shortest PA proof of
Con(PA, n). Friedman has proved an n¢ lower bound on
this length (for some € > 0), and Pudlak has proved a
polynomial upper bound. More interesting philosophically
is the length of the shortest proof of Con(PA, #) in a weaker
system, such as PRA, or even weaker systems such as
bounded arithmetic. Unfortunately, such questions hinge
on notorious unproved conjectures in complexity theory,
so almost nothing is known unconditionally. Pudldk and
others conjecture superpolynomial lower bounds; these
would imply that even if Ulphia accepts some such sys-
tem S, then any proof P in § that you can show her will
only rule out PA proofs of a contradiction that are much
shorter than P itself, and so will not necessarily convince
her that it is pointless to search for PA proofs of a

®Note that the unreasonable soundness of mathematics is not the same as Eugene Wigner’s unreasonable effectiveness of mathematics in the natural sciences. What
Stefan cannot explain are mathematicians’ purely mathematical predictions rather than their scientific predictions.
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contradiction. For more on this subject, see [14] and the
references therein.

Concluding Remarks

Mathematicians typically take the attitude that mathematical
statements are either settled or open, known or not known,
proved or not proved, and that mathematics is completely
objective and relies on nothing that is unproven. But what
this attitude glosses over is that accepting a proven theorem
requires accepting the assumptions on which the proof is
based. This simple principle applies not only to theorems
that go beyond ZFC, but to every theorem.

We have seen that by the usual standards of mathe-
matical rigor, the consistency of PA is a proven theorem
and not an open problem. On the other hand, you are free
to reject “the usual standards” in favor of some other,
stricter, standards. Depending on what those standards are,
you may or may not be able to conclude that PA is con-
sistent. If you want to minimize the assumptions you make,
then you might gravitate toward formalism, but doing so
might mean giving up much if not all of what is commonly
regarded as rigorously established mathematics. In mathe-
matics, as in life, there is no free lunch.

Earlier, we raised the question whether an inconsistency
in PA would cause all of mathematics to come crashing
down like a house of cards. Would we all be doomed to
suffer the fate of the protagonist in Ted Chiang’s short story
“Division By Zero” [4], who discovers a contradiction in
mathematics and is unable to cope? If we regard mathe-
matics as a monolithic entity with only one possible
foundation on which everything depends, then the answer
might seem to be yes, but if we recognize that there is a
sliding scale of axiomatic systems ranging from very weak
systems all the way up to large cardinal axioms in set the-
ory, then the answer is no. If PA were found to be
inconsistent, then most likely we would simply analyze the
inconsistency and adopt some other axiomatic system that
avoids the problem. For example, there exist paraconsis-
tent logics [3] that are not explosive and that can recover
gracefully from a contradiction. There is also an entire field
called reverse mathematics [15] devoted to analyzing
exactly which axioms are needed for which theorems—but
that is a topic for another essay.
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