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1 Introduction

This is a proposed solution of the exercise from my notes Products and the Axiom of

Choice.

Exercise 1 If the following assertion holds:

Given any surjective function f : A → B, there exists a function g : B →
A such that f ◦ g = idB.

then the Axiom of Choice holds.

Of course, this came from the informal exercise stated in class which morphed into
the claim

Claim: Given any surjective function f : A → B, there is a function
g : B → A for which f ◦ g = idB.

We proved this claim, but the proof required the Axiom of Choice. The discussion
below proves (I think) that one needs the Axiom of Choice.

The proof uses, critically it seems, the construction of a disjoint union. Gunning
discusses the disjoint union of two sets in §1.2 when he writes about cardinal addition.
The notion of a disjoint union is pretty straightforward, and I will explain it presently.
Since it is so central to my solution/proof below I will be pretty careful with it and use
it quite formally—which, in this case, also makes the proof much clearer. Generally,
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I don’t use disjoint unions that often, but I did mention one near the end of my
solution for Exercise 6 from my discussion of the Cantor-Bernstein theorem (which
is posted as the example of a proposal for a “hard” problem). In any case, a very
formal construction of the disjoint union requires only the product of two sets, so no
additional axiom is required. We do not need, for example an “Axiom of Disjoint
Unions.”

2 Coproducts

By a coproduct I simply mean a disjoint union.1 The idea of a disjoint union is
pretty straightforward: When you form the union of a family of sets {Aα}α∈Γ using
the Axiom of Unions, you have the sets Aα in hand, so it makes sense that you should
be able to keep track and “tag” each element a ∈ ∪Aα as it enters the union with
the index α of the set Aα from whence it came. Thus, the element a ∈ ∪Aα becomes,
if we are careful to put on tags when forming the union, aα. When we keep track
of the origin of each element in the union, we get a diffent set: If A = {0, 1} and
B = {1}, then A ∪ B = {0, 1}, but the disjoint union is something like {0A, 1A, 1B}
or if we write A = A1 and B = B2, the disjoint union might become {01, 11, 12}. In
any case, it seems apparent, then, that we need a new name/symbol for the disjoint
union, and our categorical friend Bourbaki makes the spendid suggestion

∐

. Thus,
given a collection {Aα}α∈Γ we denote the disjoint union of the sets Aα by

∐

α∈Γ

Aα.

Now this “tagging” procedure works pretty well most of the time, but the construction
can be made more formal, and I want to make it more formal. Here is a way to do
that: We form the product of ∪Aα and Γ. This uses the Axiom of Unions and the

1I must confess that my motivations for introducing the term coproduct, though they are several,
are not exceedingly compelling. First of all, I read about coproducts on the wikipedia page as an
alternative terminology for disjoint union, and the term was new to me. The best thing, and first
primary motivation, was that there is a nice symbol

∐

associated with the term (and existing in latex
and for which I have never had any use), so it is always nice to find a new and useful symbol. There
are various symbols (apparently) used to denote disjoint unions, and I had previously considered ⊕
and have probably even used that, but it does not seem to be a standard one, though apparently
⊎ and ⊔ (used by Gunning) are. This particular symbol

∐

comes from a particular backwater of
mathematics called category theory for which I also have no use. Finally, the term as it appears in
the title of this document follows nicely on the title Products and the Axiom of Choice which also
provides a primary motivation for its use.

2



specification of products within the set of all functions from Γ into the union ∪Aα.
The result looks like this:

(

⋃

α∈Γ

Aα

)

× Γ =

{

(a, α) : a ∈
⋃

α∈Γ

Aα and α ∈ Γ

}

.

Within this product we specify the disjoint union:

∐

α∈Γ

Aα =

{

(a, α) ∈

(

⋃

α∈Γ

Aα

)

× Γ : a ∈ Aα

}

.

Thus, our tags are realized by aα = (a, α). There’s not so much difference here, but
we’re going to use a natural projection on a

∐

Aα below, and

(a, α) 7→ a

is a much more intuitive and clear symbolic representation of a projection than aα 7→
a.

3 Proof of The Axiom of Choice

We recall that the Axiom of Choice concerns a product of sets

∏

α∈Γ

Aα. (1)

The Axiom of Choice is the following:

The product of a nonempty collection of nonempty sets is nonempty.

So we need an axiom to assert the product like that in (1) is nonempty.

3.1 A First Try—or The Setup

Now we are assuming an assertion which gives us the existence of a function g, and
the Axiom of Choice asserts the existence of an element in a product—which we know
is a certain function, so this looks promising. First of all, then, let’s try to identify
some domains and codomains so that the one-sided inverse g will be our element of
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the product. An element of the product (1), considered as a function, is a function p
with

p : Γ →
⋃

α∈Γ

Aα.

Thus, if we want to realize p as the function g, and we know g : B → A, then we
should set

B = Γ and A =
⋃

α∈Γ

Aα

and proceed to look for an appropriate function f : A → B. The problem is, there is
no obvious function

f :
⋃

α∈Γ

Aα → Γ.

What we’re saying is you want to take an element a of the union, and somehow
coherently connect it back with an index for the union—and presumably the index of
one of the sets Aα from which the element a came. But you don’t know, in ∪Aα any
particular set Aα from which the element a came. Given a ∈ ∪Aα, you can look at

{α : a ∈ Aα},

and you know this set is nonempty, but choosing a particular element from it to form
a function f : ∪Aα → Γ would be tantamount to using the Axiom of Choice. And we
don’t want to use the Axiom of Choice to prove the Axiom of Choice. So we need to
construct a function f in some other way; we need to do something different.

3.2 A Second Try

The way forward should now be, more or less, obvious. Given a collection of nonempty
sets {Aα}α∈Γ, let us consider a function

f :
∐

α∈Γ

Aα → Γ.

In the coproduct

∐

α∈Γ

Aα =

{

(a, α) ∈

(

⋃

α∈Γ

Aα

)

× Γ : a ∈ Aα

}

.

we have a natural projection π :
∐

Aα → Γ by (a, α) 7→ α. Thus, we can take f = π.
We know, furthermore, that π is a surjective function as long as each of the sets Aα

is nonempty.
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Let’s check this last assertion carefully, just for good measure. If α ∈ Γ,
then there is a set Aα, and we know Aα 6= φ. Therefore, there is an element
a ∈ Aα and, hence, an element (a, α) ∈

∐

Aα. And for this element, we
have π(a, α) = α. So, indeed f = π is surjective.

Now, the assertion we are assuming says that any surjective function f has a right
inverse. This means we know there is a function g : Γ →

∐

Aα such that f ◦ g = idΓ.
This looks sort of promising, but we need to note that

g : Γ →
∐

Aα

is not our desired element p of the product
∏

Aα. The function g does not have
the correct codomain in particular. Thus, we should do the obvious thing which is
consider the composition p = π ◦ g. In terms of a mapping diagram:

Γ
g
→
∐

α∈Γ

Aα
π
→
⋃

α∈Γ

Aα.

We have now obtained a function p with the correct domain and codomain. It remains
to check that p is actually an element of the product. In order to do this, we need to
show

p(α) ∈ Aα for each α ∈ Γ.

Let’s see: Given α ∈ Γ,
p(α) = π ◦ g(α)

and what we know is that f ◦ g(α) = α. Let us proceed by way of contradiction:

If we assume p(α) /∈ Aα, then g(α) = (a, α0) for some element a ∈ Aα0
.

Since we know p(α) /∈ Aα, it is clear that

α0 6= α.

On the other hand, f ◦ g(α) = f(a, α0) = α0 because f = π was the
projection. Therefore, since f ◦ g = idΓ, we have shown

α = α0.

This is a contradiction and (apparently) establishes the assertion.
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4 Surjective Functions and Right Inverses:

Summary

I believe I have shown that our lowly exercise/claim

Every surjective function has a right inverse.

is equivalent to the Axiom of Choice.
I cannot say that I am 100% sure that my argument above is correct. I need to

find an expert in set theory and logic and send it to him to check. But it looks okay
to me. And the proof is kind of cool I think.
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