
Math 4317, Assignment 2B

§1.3 Vector Spaces

1. (direct sum) Given two subspaces V1 and V2 of a vector space V , we set

V1 + V2 = {v + w : v ∈ V1 and w ∈ V2}.

This is called the sum of the subspaces V1 and V2. If V1 ∩ V2 = {0}, we say V1 + V2 is a
direct sum and write V1 + V2 = V1 ⊕ V2.

(a) Show that V1 + V2 is a subspace of V .

(b) Show that if w ∈ V1 ⊕ V2, then there are unique vectors x ∈ V1 and y ∈ V2 such
that w = x + y.

2. (direct product) Given any two vector spaces V1 and V2 over the same field, the product

space V1 × V2 is the Cartesian product with addition

(v, w) + (x, y) = (v + x, w + y)

and scaling
a(v, w) = (av, aw).

Show that V1×V2 = W1⊕W2 for appropriate subspaces W1 and W2 which are isomorphic
to V1 and V2 respectively.

3. (span) Given any subset S of a vector space V , the span of S is defined to be

{

k
∑

j=1

ajvj : a1, . . . , ak are scalars in the field, and v1, . . . , vk ∈ V

}

.

That is, the span of S is the set of all finite linear combinations of vectors in S. The
span of S is denoted span(S).

(a) Show span(S) is a subspace of V .

(b) If V1 and V2 are subspaces of a vector space V and V1 ∩ V2 = {0} with {v1, . . . , vk}
a basis for V1 and {w1, . . . , wℓ} a basis for V2, then show

{v1, . . . , vk} ∪ {w1, . . . , wℓ}

is a basis for V1 ⊕ V2. Note: The problem above has been corrected. It previously
read “...then show

{vi + wj : i = 1, . . . , k and j = 1, . . . , ℓ}

is a basis...”
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§1.2 Groups, Rings, Fields

5. The center C of a ring R is the set of all elements which commute with all others with
respect to multiplication:

C = {a ∈ R : ax = xa for all x ∈ R}.

What is the center of the ring of all n × n matrices under matrix multiplication?

Ordered rings

Problems 6,7,8, and 9 refer to the situation in which P ⊂ R is a set of positives deter-
mining an order in a ring R with

a < b ⇐⇒ b − a ∈ P.

6. Show that Z3 is a field, but Z3 is not an ordered field in the sense of being ordered by a
set of positives. Is it possible to have an order relation on Z3?

7. Show the following:

(a) T = {(a, b) : b − a ∈ P ∪ {0}} is a total order on R.

(b) P = {x ∈ R : x > 0}.

8. Show the following:

(a) a ∈ R\{0} implies a2 ∈ P .

(b) 1 > 0.

(c) If a ≤ b and c > 0, then ac ≤ bc, but if a < b and c < 0, then ac > bc.

(d) If a ≤ b, then −a ≥ −b.

9. An element in a ring is a zero divisor if a ∈ R\{0} and there is some b ∈ R\{0} for
which ab = 0. An integral domain is a ring with no zero divisors.

(a) Give an example of a ring which is not an integral domain.

(b) Give an example of a ring which is an integral domain but not a field.

(c) Show that every ordered ring (ordered by a set of positives) is an integral domain.
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§1.1-2 Sets and Numbers

11. (integers) ν0 : N0 → Z by ν0(n) = [(n, 0)] is order preserving. Hint: Recall that N0 is
ordered by set inclusion so that

1 = {0} ⊂ {0, 1} = 2,

and Z = {[(n, m)] : n, m ∈ N} is ordered by the set of positives ν0(N).

12. (rationals) Show that every nonzero rational number [(p, q)] with (p, q) ∈ Z×Z∗ can be
written uniquely in one of the following two forms

[(pk1

1 pk2

2 · · · pkn

n , qℓ1
1 qℓ2

2 · · · qℓm

m )]

where p1 < p2 < · · · pn and q1 < q2 < · · · < qm are prime natural numbers with
{p1, . . . , pn} ∩ {q1, . . . , qm} = φ, or

[(−pk1

1 pk2

2 · · · pkn

n , qℓ1
1 qℓ2

2 · · · qℓm

m )]

where p1 < p2 < · · · pn and q1 < q2 < · · · < qm are prime natural numbers with
{p1, . . . , pn} ∩ {q1, . . . , qm} = φ.

The assertion of uniqueness here requires some care. The exponents k1, . . . , kn, ℓ1, . . . , ℓm

are non-negative integers. We must allow zero exponents to obtain 1 as in, for ex-
ample, the integer classes [(n, 1)] and also the fractions [(1, n)]. This possibility (of
zero exponents) implies a certain non-uniqueness for the sets of primes {p1, . . . , pn} and
{q1, . . . , qm}. This is because, subject to the requirement that {p1, . . . , pn}∩{q1, . . . , qm} =
φ, any additional distinct primes p∗ and q∗ may be included with exponents k∗ = ℓ∗ = 0.
In all cases, however, the products pk1

1 pk2

2 · · · pkn

n and qℓ1
1 qℓ2

2 · · · qℓm

m are unique. If one of
the products pk1

1 pk2

2 · · ·pkn

n or qℓ1
1 qℓ2

2 · · · qℓm

m is 1, then for that product there is no fur-
ther uniqueness to discuss. If, however, one of the sets of exponents {kj : kj 6= 0}
or {ℓj : ℓj 6= 0} is nonempty, then the corresponding set of primes {pj : kj 6= 0} or
{qj : ℓj 6= 0} is unique.



Monotone Functions and sequences

A sequence is a function from N or N0 to a set. Here, as with our consideration of
monotone functions, we will consider sequences taking values among the real numbers.
For these particular functions we use a special/unusual notation: Instead of writing
f : N → R or f(n) for the image of n ∈ N, we use a subscript and write an as the value
assigned to n ∈ N. For the whole sequence/function we write

{an}
∞

n=1 or sometimes a1, a2, a3, . . . .

As the notation suggests, we will also consider the values of the function (also called
the sequence) as a subset of the real numbers:

{an : n = 1, 2, 3, . . .}.

No confusion should result from this slight abuse of notation.

A sequence of real numbers {an}
∞

n=1 is said to be monotone non-decreasing if an+1 ≥
an for n = 1, 2, 3, . . .. There are two possibilities for a monotone non-decreasing sequence:
Either the sequence is bounded above, or it is not bounded above, i.e., either the set of
sequence values is bounded above, or it is not. In the first case, there is a least upper

bound and we write

lim
n→∞

an = sup{an : n = 1, 2, 3, . . .} or lim
n→∞

an = sup
n∈N an.

If the sequence is not bounded above, then we write

lim
n→∞

an = sup{an : n = 1, 2, 3, . . .} = sup
n∈N an = ∞

and we say the limit exists in the extended real numbers. The extended real

numbers often denote the set R ∪ {∞} and one also uses interval notation so thatR ∪ {∞} = (−∞,∞]

and other intervals [a,∞] are also possible. Note that the extended real numbers are
quite different from the second infinite ordinal ω + 1 = {0, 1, 2, . . . , ω}. They are also
somewhat different from the second uncountable ordinal Ω+1 = Ω∪{Ω}. The symbol ∞
is different from ω and from Ω. The arithmetic associated with it is different. Sometimes
the extended real numbers include two additional symbols, ∞ and −∞, so that we
have an interval [−∞,∞]. In this case, one does not mean that −∞ is the additive
inverse of ∞.

13. What is the difference between a least upper bound and a supremum?



14. Let a1, a2, a3, . . . be a sequence of non-negative real numbers.

(a) Show the sequence {sk}
∞

k=1 defined by

sk =

k
∑

n=1

an

is a monotone non-decreasing sequence. Thus, the limit of {sk}
∞

k=1
always exists in

the extended real numbers, and we write

∞
∑

n=1

an = lim
k→∞

sk.

(b) Show the following: If
∑

∞

n=1
an = s ∈ R, then for any ǫ > 0, there is some N ∈ N

for which
k > N =⇒ s − ǫ < sk < s + ǫ.

(c) Show the following: If
∑

∞

n=1
an = ∞, then for any M > 0, there is some N ∈ N for

which
k > N =⇒ sk > M.

In the bounded case one says the series
∑

∞

n=1
an converges to the sum s. In the

unbounded case, sometimes one says the series converges to ∞. In this latter case,
it is also said that the series diverges to ∞. These phrases mean the same thing.

15. Let a1, a2, a3, . . . be any sequence of real numbers (not necessarily monotone). Again,
we consider the sequence {sk}

∞

k=1
of partial sums defined by

sk =
k

∑

n=1

an.

If there is a real number s ∈ R such that

for any ǫ > 0, there is some N ∈ N for which

k > N =⇒ s − ǫ < sk < s + ǫ,

then we write

lim
k→∞

sk = s and
∞

∑

n=1

an = s,

and say the series converges to the sum s. Show that if
∑

∞

n=1
|an| ∈ R, then

∑

∞

n=1
an ∈R. In this case, we say the series

∑

∞

n=1
an is absolutely convergent.


