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There are a variety of arithmetic assertions concerning numbers (and ultimately
natural numbers) we have been using, and should use, without thinking about them
too much. These assertions concerning, or properties of, numbers like

0 · a = 0 and a(b + c) = d

can be proved using only set theory and the Peano axioms. We give here a taste
of how that works. We note that what is described here is properly called ordinal

arithmetic. The text An Introduction to Analysis by Gunning basically suggests the
use of cardinal arithmetic as a foundation for the numbers of analysis. Gunning does
not present proofs of many basic arithmetic facts, but he has essentially the same
Peano axioms, and the proofs should go about the same way. More generally, as
long as one restricts attention to finite ordinals and cardinals, the discussion should
be precisely the same in the sense that there should be an order preserving, opera-
tions preserving bijection between the finite ordinals N0 and the corresponding set of
cardinals.

Before, we can offer proofs of arithmetic assertions like those above, we need to
make sure we understand the operations of addition and multiplication on N0 and
how they work. Everything essentially rests on the induction axiom from the Peano
axioms. For addition, we define

m + 0 = 0. (1)

This may be called the initial definition, the initialization, or the initiation.
Then we set

m + (k + 1) = (m + k) + 1 (2)

(under the tacit assumption that we know the meaning of m+k). This may be called
the recursive definition or the recursion. A few remarks are in order. Perhaps, the
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most important thing to point out is that (2) is not a consequence of the associative
property of addition. The associative property of addition is something that must
be proved using (2). It definitely looks like a special case of the associative property
with which we are familiar, but it should not be viewed that way. To help with this
required refocus, we can make it look less familiar as follows: The Peano axioms
postulate the existence of a certain function we may call the successor function.
Formally, let us denote the successor function by s : N0 → N0. In terms of the
successor function we can write (2) as

m + s(k) = s(m + k).

I trust this makes clear that (2) is not an application of the associative property of
addition. Similarly, the initiation (1) is not an application of the existence of 0 as
an additive identity. It is more primitive, and one uses it to prove (or can use it to
prove) 0 is an additive identity using the operation thus defined.

Technically, the structure of (1) and (2) together constitute what is called a re-

cursive definition or inductive definition. The notion of inductive definition

derives, itself, from the Peano axiom of induction. The idea of the construction is
something like the following: We consider the set

A = {n ∈ N0 : m + n is defined for all m ∈ N0}.

By (1) we have 0 ∈ A. And by (2) if k ∈ A, then k + 1 ∈ A. The axiom of induction
then implies A = N0, i.e., m + n is defined for all m and n in N0, i.e., we have a
well-defined operation of addition.

Exercise 1 Prove the associative property of addition,

(a + b) + c = a + (b + c) for all a, b, c ∈ N0,

by induction.

Similarly, the operation of multiplication is defined by

m · 0 = 0. (3)

m(k + 1) = mk + m or ms(k) = mk + m. (4)

Again, the recursion (4) is not a consequence of the distributive property. One uses
(4) to prove the distributive property. Here is the proof:
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Lemma 1 a(b + c) = ab + ac for all a, b, c ∈ N0.

Proof: We use induction on c:

1. a(b + 0) = ab. And ab + a · 0 = ab + 0 = ab. We have used here the initiation
for multiplication (3) to conclude a · 0 = 0. Therefore, we conclude

a(b + c) = ab + ac when c = 0.

2. Now we start with a(b+k) = ab+ak as an inductive hypothesis. Then we have

a(b + (k + 1)) = a(b + s(k)) = a[s(b + k)] by (2)
= a(b + k) + a by (4)
= ab + ak + a by inductive hypothesis and

the associative property of +
= ab + a(k + 1) by (4) applied to ak + a.

These two steps allow us to conclude, by the axiom of induction, that

a(b + c) = ab + ac for every a, b, c ∈ N0. �

Lemma 2 0 · a = 0 for every a ∈ N0.

(Notes: This is not going to follow from the commutativity of multiplication; we’ll
prove that next. Also, there is a version of this assertion that applies in any ring
where 0 is the additive identity and one has the distributive property and many other
properties we do not have in N0.)
Proof: Again, we will prove the result by induction.

1. 0 · 0 = 0. This is the result of the initiation (3).

2. If 0 · k = 0 (as inductive hypothesis), then

0 · (k + 1) = 0 · k + 0 by (4)
= 0 by inductive hypothesis and

because 0 is an additive identity.

This completes the induction on a. �

Lemma 3 ab = ba for all a, b ∈ N0, i.e., addition is commutative in N0.
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Proof: This one is a bit tricky. We start with an Induction on b:

1. a · 0 = 0 by the initiation for multiplication (3). On the other hand, 0 · a = 0
by the previous lemma. Therefore, we have the first step a · 0 = 0 · a for our
induction.

2. We have as inductive hypothesis

ak = ka. (5)

Under this hypothesis, we consider

a(k + 1) = ak + a by (4)
= ka + a by inductive hypothesis and

not by commutativity of course.

Now we start a second induction on a to show ka + a = (k + 1)a. Notice
we can’t use the distributive property, because we only have a left distributive
property, and we have not shown commutativity yet. (You could, of course, try
to establish a right distributive property independently, and were that effort
successful, it could be used here.)

(a) k · 0 + 0 = 0 = (k + 1) · 0.

(b) Now, we assume km+m = (k+1)m (as inductive hypothesis), and consider

k(m + 1) + (m + 1) = km + k + m + 1 by (4) and
associativity of +

= km + m + k + 1 by commutativity of +
= (k + 1)m + k + 1 by inductive hypothesis
= (k + 1)(m + 1) by the recursion (4)

applied recursively to m.

This establishes that ka + a = (k + 1)a for every a ∈ N0. Therefore, we may
return to our primary induction and conclude

a(k + 1) = (k + 1)a.

We have established the commutativity of multiplication in N0. �

Exercise 2 Prove the commutativity of addition in N0.
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