
Math 4317, Exam 2 Name and section:

1. (a) (10 points) Define the term compact.

(b) (15 points) Prove that a nonempty compact set in a metric space is bounded.

Solution:

(a) A set K is compact if any open cover of K has a finite subcover.

(b) Let K be a nonempty compact set. Since K is nonempty, we can take a point
x0 ∈ K.

Consider the open cover {Bj(x0) : j = 1, 2, 3, . . .}. (For each point x ∈ K there
is some j with j > d(x0, x). This means x ∈ Bj(x0).)

Since K is compact, we can find a compact subcover of {Bj(x0) : j = 1, 2, 3, . . .}.
This means there is a ball of maximum radius j0 in the subcover. This means
K ⊂ Bj0(x0).
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2. (a) (10 points) Define what it means for a function f : X → X̃ to be continuous at a

point p0 ∈ X where X and X̃ are metric spaces with distances d and d̃ respectively.

(b) (15 points) Consider f : R → R by

f(x) = x2.

Prove f is continuous at x0 = 2. (Use the absolute value as a norm, i.e., the usual
metric on R, in both the domain and range.)

Solution:

(a) f is continuous at a point p0 ∈ X if for any ǫ > 0, there is some δ > 0 such that

d(p, p0) < δ implies d̃(f(p), f(p0)) < ǫ.

(b) Let ǫ > 0. Set δ = min{1, ǫ/5}. If

d(x, 2) = |x − 2| < δ,

then 1 < x < 3, so 3 < x + 2 < 5, and |x + 2| < 5. Therefore,

|f(x) − f(2)| = |x2 − 4| = |x − 2||x + 2| < (ǫ/5) · 5 = ǫ.

This means that f is continuous at 2.
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3. (a) (10 points) Define the term connected.

(b) (15 points) Prove that the interval [0, 1] is a connected subset of R.

Solution:

(a) A set A is connected if whenever U1 and U2 are disjoint open sets such that
A ⊂ U1 ∪ U2, then one of the two sets U1 ∩ A or U2 ∩ A is empty.

(b) To see that [0, 1] is a connected subset of R, assume there are two disjoint open
sets U1 and U2 with [0, 1] ⊂ U1 ∪ U2, [0, 1] ∩ U1 6= φ, and [0, 1] ∩ U2 6= φ. We
now seek a contradiction.

Under these assumptions x = 0 is in one of the sets [0, 1] ∩ U1 or [0, 1] ∩ U2.
Without loss of generality, let us assume 0 ∈ [0, 1]∩U1. Since U1 is open, there
is some ǫ > 0 for which [0, ǫ) ⊂ U1. We may assume ǫ ≤ 1.

Thus, the set E = {ǫ : [0, ǫ) ⊂ [0, 1] ∩ U1} is a nonempty set in R which is
bounded above (by 1). By the least upper bound property, we know E has a
least upper bound 0 < t ≤ 1. It follows also that

t ∈ E ∩ U1. (1)

To see this, note that either t ∈ U1 or t ∈ U2. If t ∈ U2, then there is some r > 0
such that (t− r, t] ⊂ (0, 1)∩U2. In particular, the point t− r/2 ∈ U2\U1 which
contradicts the definition of t since t − r/4 < t. Thus, t ∈ U1, and if 0 ≤ x < t,
then x ∈ [0, t − (t − x)/2) ⊂ [0, 1] ∩ U1 by the definitions of t and E. That is,
[0, t) ⊂ [0, 1] ∩ U1, or t ∈ E.

It follows immediately from (1) that [0, t] ⊂ U1. If t < 1, there is some r > 0
for which [t, t + r) ⊂ (0, 1)∩U1, and we have an immediate contradiction of the
definition of t. Therefore, t = 1 and [0, 1] ⊂ U1. This contradicts the assumption
that [0, 1] ∩ U2 6= φ.

An alternative definition of connected is that A and φ are the only sets that are
both open and closed relative to the subspace A.

A proof that [0, 1] is connected based on this definition is as follows: Assume
U is both open and closed in [0, 1]. Then 0 must either be in U or the (open)
complement V of U . Without loss of generality, let’s say 0 ∈ U . Then again,
there is some interval [0, ǫ) ⊂ U with 0 < ǫ ≤ 1. If we can take ǫ = 1, then we
can argue that 1 ∈ U as well, since U is closed. Thus, U = [0, 1] and V = φ.

Alternatively, if there is some v ∈ V , then V is a nonempty set which is bounded
below, and we can consider v0 = inf V by the greatest lower bound property.
Again, since V is closed, we know v0 ∈ V . On the other hand, v0 > ǫ. Therefore,
there is some interval (v0 − δ, v0] ⊂ V , and this contradicts the definition of v0.

Each of the proofs above can be simplified a little bit. Let’s take the first one:
Start, as before, with 0 ∈ [0, 1]∩U1. Since we know C2 = [0, 1]∩U2 is nonempty



Name and section:

and bounded below, we can set v0 = inf C2 by the greatest lower bound property.
Since U1 is open, we know there is some interval [0, ǫ) ⊂ U1 with 0 < ǫ < 1.
Therefore, v0 > 0. Using the same reasoning, we can see that v0 < 1.

Now, if v0 ∈ U1, then there is some interval [v0, v0 + ǫ) ⊂ C1 = [0, 1] ∩ U1. This
contradicts the definition of v0 as the greatest lower bound. Therefore, v0 ∈ U2.
But U2 is also open, so this means there is some δ > 0 such that (v0−δ, v0] ⊂ C2,
and this contradicts the fact that v0 is a lower bound.
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4. (25 points) Label each of the following assertions as “true” or “false.” If a statement is
true, you do not need to explain why, but if a statement is false, give a counterexample.
(Counterexamples need to be correct and carefully given, but you do not need to prove
anything about them.)

Some of the assertions below involve the Cantor set. We will learn more about the
Cantor set later in the course, but all you need to know for this problem is that the
Cantor set C is a closed subset of the unit interval [0, 1].

(a) A closed and bounded set is compact.

(b) The Cantor set is compact.

(c) The inverse image of a connected set under a continuous function is connected.

(d) The inverse image of an open set under a continuous function is open.

(e) Given a continuous function f : C → R (with domain the Cantor set), there is some
number M and some x0 ∈ C with f(x0) = M ≥ f(x) for every x ∈ C.

(f) Let {fj}
∞

j=1
be a sequence of continuous real valued functions on a non-compact

domain. If fj converges uniformly to a function f , then f must be continuous.

Solution:

(a) A closed and bounded set is compact.

False: (0, 1) is closed and bounded in the space (0, 1), but is not compact.

(b) The Cantor set is compact.

True.

(c) The inverse image of a connected set under a continuous function is connected.

False: Let f : R → R by f(x) = x2. Then f−1(1, 4) = (−2,−1) ∪ (1, 2) is
disconnected.

(d) The inverse image of an open set under a continuous function is open.

True.

(e) Given a continuous function f : C → R (with domain the Cantor set), there is
some number M and some x0 ∈ C with f(x0) = M ≥ f(x) for every x ∈ C.

True.

(f) Let {fj}
∞

j=1
be a sequence of continuous real valued functions on a non-compact

domain. If fj converges uniformly to a function f , then f must be continuous.

True.


