Math 4317, Exam 1

Name and section:

- 1. (i) State precisely the definition of a function. (Hint: Given two sets X and Y, \ldots)
 - (ii) Given a function $f: X \to Y$, and a subset $B \subset Y$, define $f^{-1}(B)$.
 - (iii) Given a function $f: X \to Y$, and a subset $A \subset X$, define f(A).
 - (iv) Given a function $f: X \to Y$ and $A \subset X$, show that

$$f^{-1}(f(A)) \supset A.$$

(v) Give an example to show the inclusion of part (iv) may be proper.

(25 points) Solution:

- (i) A function is a rule or correspondence which assigns to each $x \in X$ a unique $y \in Y$.
- (ii) $f^{-1}(B) = \{x \in X : f(x) \in B\}.$
- (iii) $f(A) = \{f(x) : x \in A\}.$
- (iv) If $x \in A$, then $f(x) \in f(A) \subset Y$. This means $x \in f^{-1}(B)$ where B = f(X), by definition (ii).
- (v) Let $f : \{1,2\} \to \{0\}$ by f(x) = 0 for all x. Let $A = \{1\}$. Then $f^{-1}(f(A)) = \{1,2\} \supseteq A$.

Name and section:

2. (25 points) Define bounded above.

Define upper bound.

Define supremum.

Solution:

- 1. Given a set A of real numbers, we say A is bounded above if there is a real number M with $M \ge x$ for every $x \in A$.
- 2. Given a set A of real numbers which is bounded above, we say a real number M is an upper bound for A if $x \leq M$ for every $x \in A$.
- 3. Given a nonempty set A of real numbers which is bounded above, a number M is the supremum of A (or the least upper bound of A), if M is an upper bound for A and if $B \in \mathbb{R}$ is any other upper bound for A, then $B \ge M$.

Name and section:

3. (i) State precisely the least upper bound property for \mathbb{R} .

Let
$$A = \{\sqrt{2}, \sqrt{2 + \sqrt{2}}, \sqrt{2 + \sqrt{2} + \sqrt{2}}, \dots\}$$
.

(ii) Give a recursion formula relating the elements in A.

- (iii) Does the least upper bound property apply to A?
- (iv) Find $\sup A$ as an extended real number.

(25 points) Solution:

- (i) A nonempty subset of \mathbb{R} which is bounded above has a least upper bound in \mathbb{R} .
- (ii) $a_{j+1} = \sqrt{2 + a_j}$.
- (iii) We show that $a_j < 2$ for all j by induction. First, $a_1 = \sqrt{2} < 2$ since 2 < 4. Next, if $a_j < 2$, then $a_{j+1} = \sqrt{2 + a_j} < \sqrt{2 + 2} = 2$.
- (iv) The sequence $\{a_j\}$ is increasing. (This we will prove by induction below.) We showed in part (iii) that the sequence is bounded above, therefore it has a limit which is $\sup A = x$. Taking the limit on both sides of the recursion relation, we find $x = \sqrt{2+x}$. Thus, x is a positive solution of the quadratic equation $x^2 x 2 = (x 2)(x + 1) = 0$. Therefore, x = 2.

Proof that the sequence is increasing: $a_1 < a_2$. That is clear. If $a_{\ell} < a_{\ell+1}$, then $a_{\ell+2} = \sqrt{2 + a_{\ell+1}} > \sqrt{2 + a_{\ell}} = a_{\ell+1}$.

4. (i) Define what it means for a set in a metric space to be open.

(ii) For this question, let us define a *closed* set to be one whose complement is open. Using your definition from part (i), show that an arbitrary intersection of closed sets is closed.

(25 points) Solution:

(i) A set U in a metric space X is open if whenever $x \in U$, there is some r > 0 such that

$$B_r(x) = \{\xi \in X : d(\xi, x) < r\} \subset U$$

where $d: X \times X \to [0, \infty)$ is the distance function for X.

(ii) Let C_{α} be a closed set in a metric space X for every α in some indexing set Γ . If $x \in (\cap C_{\alpha})^c = \bigcup C_{\alpha}^c$, then there is some α_0 such that x is in the open set $U = C_{\alpha_0}^c$. This means there is some r > 0 with

$$B_r(x) \subset U \subset (\cap C_\alpha)^c.$$

This means, $(\cap C_{\alpha})^c$ is open, and that means $\cap C_{\alpha}$ is closed. \Box