EXAMPLE 9

Let V be the space of all infinite sequences of real numbers. We define the linear transformation

$$T(x_0, x_1, x_2, x_3, x_4, \dots) = (x_1, x_2, x_3, x_4, \dots)$$

from V to V (we omit the first term, x_0). Find all the eigenvalues and eigensequences of T.

Solution

Since V is infinite dimensional, we cannot use the matrix techniques of Example 8 here. We have to go back to the definition of an eigenvalue: For a fixed scalar λ , we are looking for the infinite sequences $(x_0, x_1, x_2, x_3, \dots)$ such that

$$T(x_0, x_1, x_2, x_3, ...) = \lambda(x_0, x_1, x_2, x_3, ...)$$

Ōľ

$$(x_1, x_2, x_3, \dots) = \lambda(x_0, x_1, x_2, x_3, \dots)$$

or

$$x_1 = \lambda x_0, \quad x_2 = \lambda x_1 = \lambda^2 x_0, \quad x_3 = \lambda x_2 = \lambda^3 x_0, \dots$$

The solutions are the geometric sequences of the form

$$(x_0, \lambda x_0, \lambda^2 x_0, \lambda^3 x_0, \dots) = x_0(1, \lambda, \lambda^2, \lambda^3, \dots).$$

Thus all real numbers λ are eigenvalues of T, and the eigenspace E_{λ} is one dimensional for all λ , with the geometric sequence $(1, \lambda, \lambda^2, \lambda^{\overline{3}}, \dots)$ as a basis.

For example, when $\lambda = 3$, we have

$$T(1, 3, 9, 27, 81, \dots) = (3, 9, 27, 81, \dots) = 3(1, 3, 9, 27, \dots),$$

demonstrating that (1, 3, 9, 27, 81, ...) is an eigensequence of T with eigenvalue 3.

EXERCISES 7.4

GOAL Use the concept of a diagonalizable matrix. Find the eigenvalues of a linear transformation.

Decide which of the matrices A in Exercises 1 through 20 are diagonalizable. If possible, find an invertible S and a diagonal D such that $\hat{S}^{-1}AS = D$. Do not use technology.

1.
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$2. \ A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
 4. $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$

$$\mathbf{4.} \ \ A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

$$5. \ A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 6. $A = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix}$

7.
$$\begin{bmatrix} 1 & 4 \\ 1 & -2 \end{bmatrix}$$

8.
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

$$\mathbf{9.} \ \ A = \begin{bmatrix} 4 & 9 \\ -1 & -2 \end{bmatrix}$$

9.
$$A = \begin{bmatrix} 4 & 9 \\ -1 & -2 \end{bmatrix}$$
 10. $A = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$

11.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 12. $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathbf{12.} \ \ A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

13.
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
 14. $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

14.
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

15.
$$A = \begin{bmatrix} 3 & -4 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 16. $A = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

16.
$$A = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

17.
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 18. $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

$$\mathbf{18.} \ \ A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

19.
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

19.
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 20. $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$